Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Combustion Mode Switch by Integrating Stoichiometric ASSCI Mode in a Four-cylinder Gasoline SI/HCCI Engine

2014-04-01
2014-01-1288
Homogeneous Charge Compression Ignition (HCCI) and Spark Ignition (SI) dual-mode operation provides a practical solution to apply HCCI combustion in gasoline engines. However, the different requirements of air-fuel ratio and EGR ratio between HCCI combustion and SI combustion results in enormous control challenges in HCCI/SI mode switch. In this paper, HCCI combustion was achieved in a four-cylinder gasoline direct injection engine without knock and misfire using close-loop control by knock index. Assisted Spark Stratified Compression Ignition (ASSCI) combustion was obtained stably at medium-high load. ASSCI combustion exhibits two-stage heat release with initial flame propagation and controlled auto-ignition. The knock index of ASSCI combustion is less than HCCI combustion due to the lower pressure rise rate.
Technical Paper

Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE)/ Wide Distillation Fuel (WDF) Blends in Diesel Engine

2018-04-03
2018-01-0926
Wide Distillation Fuel (WDF), with a distillation range from Initial Boiling Point of gasoline to Final Boiling Point of diesel, can be easily gained directly by blending diesel with gasoline. However, the reduced auto-ignitability of WDF could lead to higher HC emissions. Polyoxymethylene Dimethyl Ethers (PODE), with good volatility and oxygen content of up to 49%, have great potential to improve combustion and emission characteristics, especially for soot reduction. Experiments were carried out in a light-duty four-cylinder diesel engine fueled with neat diesel, gasoline/diesel blends (GD), GD/PODE blends (GDP) and the combustion and emission characteristics were carefully examined. Results showed that GDP had the lowest PM emission and diesel had the poorest one among the three fuels. Due to the addition of gasoline and the relatively poor ignitability, GD had lower combustion efficiency and higher Soluble Organic Fraction (SOF) emissions than diesel.
Technical Paper

Effects of Spark Ignition and Stratified Charge on Gasoline HCCI Combustion With Direct Injection

2005-04-11
2005-01-0137
HCCI combustion was studied in a 4-stroke gasoline engine with a direct injection system. The electronically controlled two-stage gasoline injection and spark ignition system were adopted to control the mixture formation, ignition timing and combustion rate in HCCI engine. The engine could be operated in HCCI combustion mode in a range of load from 1 to 5 bar IMEP and operated in SI combustion mode up to load of 8 bar IMEP. The HCCI combustion characteristics were investigated under different A/F ratios, engine speeds, starts of injection, as well as spark ignition enabled or not. The test results reveal the HCCI combustion features as a high-pressure gradient after ignition and has advantages in high thermal efficiency and low NOx emissions over SI combustion. At the part load of 1400rpm and IMEP of 3.5bar, ISFC in HCCI mode is 25% lower and NOx emissions is 95% lower than that in SI mode.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

Homogeneous Charge Combustion and Emissions of Ethanol Ignited by Pilot Diesel on Diesel Engines

2004-03-08
2004-01-0094
Homogeneous charge combustion and emissions of ethanol ignited by pilot diesel fuel were investigated on a two-cylinder diesel engine. The results show that emissions depend on loads and ethanol volume fraction. At low loads, ethanol has little effects on smoke. With the increase of ethanol, NOx decreases, but CO emissions increase. At high loads, smoke emissions reduce greatly with increasing ethanol, but NOx and total hydrocarbon (THC) emissions increase. With the increase of ethanol, ignition delays, combustion duration shortens. The maximum rates of heat release for the fuel containing 10 vol% ethanol (E10) and 30 vol% ethanol (E30) increase. Brake specific energy consumption (BSEC) of E10 and E30 is improved slightly only at full loads. Compared to smoke emissions obtained on the same engine using ethanol blended diesel fuels, the tendency of smoke reduction is similar to that of homogeneous charge combustion of ethanol at the same operating conditions.
Technical Paper

PLII-LEM and OH* Chemiluminescence Study on Soot Formation in Spray Combustion of PODEn-Diesel Blend Fuels in a Constant Volume Vessel

2017-10-08
2017-01-2329
Polyoxymethylene dimethyl ethers (PODEn) are promising alternative fuel candidates for diesel engines because they present advantages in soot reduction. This study uses a PODEn mixture (contains PODE3-6) from mass production to provide oxygen component in blend fuels. The spray combustion of PODEn-diesel bend fuels in a constant volume vessel was studied using high speed imaging, PLII-LEM and OH* chemiluminescence. Fuels of several blend ratios are compared with pure diesel. Flame luminance data show a near linear decrease tendency with the blend ratio increasing. The OH* images reveal that the ignition positions of all the cases have small differences, which indicates that using a low PODEn blend ratio of no more than 30% does not need significant adjustment in engine combustion control strategies. It is found that 30% PODEn blended with diesel (P30) can effectively reduce the total soot by approximately 68% in comparison with pure diesel.
Journal Article

Performance, Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE3-4)/ Wide Distillation Fuel (WDF) Blends in Premixed Low Temperature Combustion (LTC)

2015-04-14
2015-01-0810
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from Initial Boiling Point (IBP) of gasoline to Final Boiling Point (FBP) of diesel. Polyoxymethylene Dimethyl Ethers (PODEn) have high oxygen content and cetane number, are promising green additive to diesel fuel. In this paper, WDF was prepared by blending diesel and gasoline at ratio of 1:1, by volume; the mass distribution of oligomers in the PODE3-4 product was 88.9% of PODE3 and 8.46% of PODE4. Diesel fuel (Diesel), WDF (G50D50) and WDF (80%)-PODE3-4 (20%) (G40D40P20) were tested in a light-duty single-cylinder diesel engine, combustion characteristic, fuel consumption and exhaust emissions were measured. The results showed that: at idling condition, G40D40P20 has better combustion stability, higher heat release rate, higher thermal efficiency compared with G50D50.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Journal Article

Research on Unregulated Emissions from an Alcohols-Gasoline Blend Vehicle Using FTIR, HPLC and GC-MS Measuring Methods

2013-04-08
2013-01-1345
Unregulated emissions have become an important factor restricting the development of methanol and ethanol alternative alcohols fuels. Using two light-duty vehicles fuelled with pure gasoline, gasoline blend of 10% and 20% volume fraction of ethanol fuels, gasoline blend of 15% and 30% volume fraction of methanol fuels, New European Driving Cycle (NEDC) emission tests were carried on a chassis dynamometer according to ECE R83-05. High performance liquid chromatography (HPLC), Gas chromatography - Mass spectrometry (GC-MS), Fourier transform infrared spectrometer (FTIR) were used to measure methanol, formaldehyde, acetaldehyde, acetone, benzene, toluene, xylene, ethylene, propylene, 1,3-butadiene and isobutene emissions in the exhaust during the NEDC.
Technical Paper

Study of Injection Strategies of Two-stage Gasoline Direct Injection (TSGDI) Combustion System

2005-04-11
2005-01-0107
Gasoline Direct Injection (GDI) engines developed at nineties of the twentieth century can greatly improve the fuel economy. But the combustion chamber design and mixture control of the engines are very complex compared with Port Fuel Injection (PFI) gasoline engines. A two-stage gasoline direct injection (TSGDI) combustion system is developed and aimed to solve the problem of the complexity. Two-stage fuel injection and flexible injection timings are adopted as main means to form reasonable stratified mixture in the cylinder. A simple combustion chamber and helical intake port are designed to assist the mixture's stable combustion, which reduces the difficulties of the combustion system design. Systematical simulation and experimental studies of the effects of injection strategies such as different first,second injection timings and injection ratios, on the mixture formation processes and engine performanc are made in detail.
Technical Paper

Study on Combustion and Emission Characteristics of Diesel Engines Using Ethanol Blended Diesel Fuels

2003-03-03
2003-01-0762
The effect of ethanol blended diesel fuels on brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), smoke and NOx emissions has been investigated in a direct-injection diesel engine. Unregulated emissions including formaldehyde, acetaldehyde and unburned ethanol emissions are also analyzed. The results indicate that with the increase of ethanol in the blends, smoke reduces significantly, BSEC improves slightly and combustion duration decreases. However, the rate of heat release increases. Ignition delays. BSFC, NOx, acetaldehyde and unburned ethanol emissions increase. The maximum acetaldehyde emissions reached up to 100 ppm at low load. Compared to a gasoline engine using ethanol blended gasoline fuels, unburned ethanol emissions of the diesel engine are higher than those of the gasoline engine at the same ethanol concentrations and similar loads.
Technical Paper

The Comparative Study of Gasoline and n-butanol on Spray Characteristics

2014-10-13
2014-01-2754
n-butanol has been recognized as a promising alternative fuel for gasoline and may potentially overcome the drawbacks of methanol and ethanol, e.g. higher energy density. In this paper, the spray characteristics of gasoline and n-butanol have been investigated using a high pressure direct injection injector. High speed imaging and Phase Doppler Particle Analyzer (PDPA) techniques were used to study the spray penetration and the droplet atomization process. The tests were carried out in a high pressure constant volume vessel over a range of injection pressure from 60 to 150 bar and ambient pressure from 1 to 5 bar. The results show that gasoline has a longer penetration length than that of n-butanol in most test conditions due to the relatively small density and viscosity of gasoline; n-butanol has larger SMD due to its higher viscosity. The increase in ambient pressure leads to the reduction in SMD by 42% for gasoline and by 37% for n-butanol.
X