Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Characteristics of Turbocharger with TiAl Turbine Wheel in a Downsizing GDI Engine

2013-10-14
2013-01-2499
Steady and transient tests in a downsizing Gasoline Direct Injection (GDI) in-line 4 cylinders 2.0 liter engine were carried out to investigate characteristics of turbocharger with Titanium aluminide (TiAl) turbine wheel. The density of TiAl material is lower than Inconel 718 (Inconel) which is raw material for conventional turbine wheel. The objective of this study was to investigate the effect of light rotational inertia of turbine wheel on engine performance. Performance of TiAl turbine wheel turbocharger itself was also compared to that of Inconel turbine wheel turbocharger. Except for the turbine wheels, all experimental conditions were matched to be the same load and engine speed conditions. The compressor total-to-total pressure ratio of TiAl turbocharger was higher under part load condition due to higher turbocharger speed of TiAl turbocharger, which was led by lower rotational inertia of TiAl turbine wheel, while the engine performance was not much improved.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Technical Paper

Development of High Efficiency Gasoline Engine with Thermal Efficiency over 42%

2017-10-08
2017-01-2229
The maximum thermal efficiency of gasoline engine has been improving and recently the maximum of 40% has been achieved. In this study, the potential of further improvement on engine thermal efficiency over 40% was investigated. The effects of engine parameters on the engine thermal efficiency were evaluated while the optimization of parameters was implemented. Parameters tested in this study were compression ratio, tumble ratio, twin spark configuration, EGR rate, In/Ex cam shaft duration and component friction. Effects of each parameter on fuel consumption reduction were discussed with experimental results. For the engine optimization, compression ratio was found to be 14, at which the best BSFC without knock and combustion phasing retardation near sweet spot area was showed. Highly diluted combustion was applied with high EGR rate up to 35% for the knock mitigation.
Technical Paper

Effects of High-Response TiAl Turbine Wheel on Engine Performance under Transient Conditions

2015-09-01
2015-01-1881
Transient tests in a 2.0 liter in-line 4 cylinder downsizing gasoline direct injection engine were conducted under various transient conditions in order to investigate effects of lower rotational inertia of titanium aluminide alloy (TiAl) turbine wheel on engine and turbocharger performances. As a representative result, fast boost pressure build up was achieved in case of TiAl turbocharger compared to Inconel turbocharger. This result was mainly due to lower rotational inertia of TiAl turbine wheel. Engine torque build up response was also improved with TiAl turbocharger even though engine torque response gap between both turbochargers was slightly reduced due to retarded combustion phase. In addition, with advanced ignition timing, fuel consumption became less than that of Inconel turbocharger with similar engine torque response.
Journal Article

Spray and Combustion Characteristics of Ethanol Blended Gasoline in a Spray Guided DISI Engine under Lean Stratified Operation

2010-10-25
2010-01-2152
An experimental study was performed to evaluate the effects of ethanol blending on to gasoline spray and combustion characteristics in a spray-guided direct-injection spark-ignition engine under lean stratified operation. The spray characteristics, including local homogeneity and phase distribution, were investigated by the planar laser-induced fluorescence and the planar Mie scattering method in a constant volume chamber. Therefore, the single cylinder engine was operated with pure gasoline, 85 %vol, 50 %vol and 25vol % ethanol blended with gasoline (E85, E50, E25) to investigate the combustion and exhaust emission characteristics. Ethanol was identified to have the potential of generating a more appropriate spray for internal combustion due to a higher vapor pressure at high temperature conditions. The planar laser-induced fluorescence image demonstrated that ethanol spray has a faster diffusion velocity and an enhanced local homogeneity.
Technical Paper

The Fuel Economy Improvement through the Knock Margin Expansion in a Turbocharged Gasoline Direct Injection Engine

2018-09-10
2018-01-1671
Knocking combustion limits the downsized gasoline engines’ potential for improvement with regard to fuel economy. The high in-cylinder pressure and temperature caused by the adaptation of a turbocharger aggravates the tendency of the end-gas to autoignite. Thus, the knocking combustion does not allow for further advancing of the combustion phase. In this research, the effects of the ignition and valve timings on knocking combustion were investigated under steady-state conditions. Moreover, the optimal ignition and valve timings for the transient operations were derived with the aim of a greater fuel economy improvement, based on the steady-state analysis. A 2.0 liter turbocharged gasoline direct injection engine with continuously variable valve timing (CVVT), was utilized for this experiment. 2, 10, and 18 bar brake mean effective pressure (BMEP) load conditions were used to represent the low, medium, and high load operations, respectively.
X