Refine Your Search

Topic

Search Results

Technical Paper

Computer Models For Evaluating Premixed and Disc Wankel Engine Performance

1986-03-01
860613
This paper describes two types of computer models which have been developed to analyze the performance of both premixed-charge and direct-injection stratified-charge Wankel engines. The models are based on a thermodynamic analysis of the contents of the engine's chambers. In the first type of model, the rate of combustion is predicted from measured chamber pressure by use of a heat release analysis. The analysis includes heat transfer to the chamber walls, work transfer to the rotor, enthalpy loss due to flows into crevices and due to leakage flows into adjacent chambers, and enthalpy gain due to fuel injection. The second type of computer model may be used to predict the chamber pressure during a complete engine cycle. From the predicted chamber pressure, the overall engine performance parameters are calculated. The rate of fuel burning as an algebraic function of crank angle is specified.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Divided-Chamber Diesel Engine, Part II: Experimental Validation of a Predictive Cycle-Simulation and Heat Release Analysis

1982-02-01
820274
In this study, a set of performance and emissions data, obtained from a single-cylinder divided-chamber automotive diesel engine over the normal engine operating range, is described and analyzed. The data are used to evaluate a computer simulation of the engine's operating cycle, described in a companion paper, which predicts the properties of gases inside the engine cylinder throughout the cycle, and engine efficiency, power and NOx emissions. Satisfactory agreement between predictions and measurements is obtained over most of the engine's operating range. The characteristics of the experimental pre- and main-chamber pressure versus crank angle data are then examined in detail. A heat release analysis appropriate for divided-chamber diesel engines is developed and used to obtain heat release rate profiles through the combustion process.
Technical Paper

Effect of Hydrogen as an Additive on Lean Limit and Emissions of a Turbo Gasoline Direct Injection Engine

2015-09-01
2015-01-1886
For gasoline engine, thermal efficiency can be improved by using lean burn. However, combustion instability occurs when gasoline engine is operated on lean condition. Hydrogen has features that can be used for improving combustion stability of gasoline engine. In this paper, an experimental study of hydrogen effect on lean limit was carried out using a four-cylinder 2.0L turbo gasoline direct injection engine. The engine torque was fixed at 110Nm on 1600RPM, 2000RPM and 2400RPM. The results showed that lean limit was extended and brake thermal efficiency was improved by hydrogen addition. Especially, at lower engine speed, the large improvement of lean limit was achieved. However, improvement of brake thermal efficiency was achieved at high speed. HC and CO2 emissions were decreased and NO emissions increased with hydrogen addition. CO emissions were slightly reduced with hydrogen addition.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Technical Paper

Evaluation of SOF Effects on Deposit Characteristics of the EGR Cooler Using a PM Generator

2011-04-12
2011-01-1156
The high concentration of particulate matter (PM) in diesel exhaust gas causes significant soot deposition on the wall of EGR cooler, and reduces the heat transfer performance of the EGR cooler and the reduction rate of NOx. The deposition of PM tends to be occurred more severely with "heavy wet PM," which is more frequently at the LTC (low temperature combustion) engine. The objective of this work is to evaluate the effects of soluble organic fraction (SOF) on deposit characteristics of the EGR cooler. To measure reliable mean particle concentration values and surrogate SOFs, the soot generator with SOF vaporizer was used. As for two surrogate SOFs, n-dodecane and diesel lube oil, deposit mass increased when they were injected. Especially from the experiment results, it was found that the lube oil effect was more significant than the n-dodecane effect and lube oil also had a stronger effect on reduction of thermal conductivity by filling pores in deposits.
Technical Paper

Evaluation of a One-Zone Burn-Rate Analysis Procedure Using Production SI Engine Pressure Data

1993-10-01
932749
A single-zone burn-rate analysis based on measured cylinder pressure data proposed by Gatowski et al. in 1984 was evaluated over the full load and speed range of a spark-ignition engine. The analysis, which determines the fuel mass burning rate based on the First Law of Thermodynamics, includes sub-models for the effects of residual fraction, heat transfer, and crevices. Each of these sub-models was assessed and calibrated. Cylinder pressure data over the full engine operating range obtained from two different engines were used to examine the robustness of the analysis. The sensitivity of predictions to the parameters wall temperature, heat transfer model coefficients and exponent, swirl ratio, motoring polytropic constant, in-cylinder mass, and to uncertainty in pressure data was evaluated.
Technical Paper

Experimental Study on Soot Oxidation Characterization of Pt/CeO2 Catalyst with NO and O2 Using a Flow Reactor System

2009-04-20
2009-01-1475
The oxidation of soot (carbon black) which is assisted by Pt/CeO2 catalyst is studied using a flow reactor system simulating the condition of diesel exhaust. In this study, the temperature programmed oxidation (TPO) scheme is mainly used for different NO and O2 concentrations and soot oxidation rate is evaluated by monitoring both CO and CO2 concentrations. Pt/CeO2 catalyst lowers the temperature of the peak CO/CO2 concentrations significantly when there is either NO or O2. Oxidation starts at 200°C and the peak CO2 concentration is observed at 360°C, which depends on the amount of catalyst and NO concentration. The effect of catalyst on NO2 recycling is also investigated. For this purpose, two different types of sample have been prepared. For the mixed case, 10mg of carbon black is mixed with 50mg of Pt/CeO2 catalyst under conditions of loose contact. For the unmixed case, the catalyst layer is placed on top of soot layer without mixing.
Technical Paper

Experimental and Theoretical Analysis of Wankel Engine Performance

1978-02-01
780416
A model for predicting the performance and emissions characteristics of Wankel engines has been developed and tested. Each chamber is treated as an open thermodynamic system and the effects of turbulent flame propagation, quench layer formation, gas motion, heat transfer and seal leakage are included. The experimental tests were carried out on a Toyo Kogyo 12B engine under both motoring and firing conditions and values for the effective seal leakage area and turbulent heat transfer coefficient were deduced. The agreement between the predicted and measured performances was reasonable. Parametric studies of the effects of reductions in seal leakage and heat transfer were carried out and the results are presented.
Technical Paper

Flow Characteristics in Intake Port of Spark Ignition Engine Investigated by CFD and Transient Gas Temperature Measurement

1996-10-01
961997
A computational fluid dynamics (CFD) prediction of the transient flow in the intake system of a spark ignition engine is compared to experimental data. The calculation was performed for a single cylinder version of a pre-1995 Ford two-valve production engine, while experiments were carried out on a single cylinder Ricardo Mark 3 research engine with similar overall geometric parameters. While the two engines have somewhat different geometries, this was not considered to be a significant problem for our study of flow features. Both set-ups employed gaseous fuel. The calculation was performed using the commercially available Star-CD code incorporating the complete intake manifold runner and cylinder into the mesh. Cylinder pressures were in good agreement with experiment indicating that wave dynamics were well captured. Comparison was also made to the measured instantaneous gas temperatures along the intake system.
Technical Paper

Heat Release Analysis of Engine Pressure Data

1984-10-01
841359
In analyzing the processes inside the cylinder of an internal combustion engine, the principal diagnostic at the experimenter's disposal is a measured time history of the cylinder pressure. This paper develops, tests, and applies a heat release analysis procedure that maintains simplicity while including the effects of heat transfer, crevice flows and fuel injection. The heat release model uses a one zone description of the cylinder contents with thermodynamic properties represented by a linear approximation for γ(T). Applications of the analysis to a single-cylinder spark-ignition engine, a special square cross-section visualization spark-ignition engine, and a direct-injection stratified charge engine are presented.
Technical Paper

Heat Transfer and Mixture Vaporization in Intake Port of Spark-Ignition Engine

1997-10-01
972983
Time-resolved heat flux and gas temperature measurements in the intake port of a spark ignition engine are presented. Experiments were pursued for motored, propane fired, and liquid fuel operation. Heat transfer coefficients were built from the dry data. Also, heat transfer rates in the port and off the back of the intake valve were integrated over the main flow phases. For a typical low-load propane-fired operating condition, heat transfer in the port caused a mean intake air temperature increase of approximately 10°C. The main different intake flow phases, induction or forward flow, displacement backflow, and valve overlap backflow, contributed approximately 10°C, 3°C, and negative 3°C, respectively. These mixture temperature changes are expected to be also applicable for liquid fuel injected cases. While the heat flux instrumentation was primarily intended for dry operation of the engine, liquid fuel experiments were also pursued.
Technical Paper

How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine

1990-02-01
900021
A conventional spark plug and a spark plug with smaller electrodes were studied in M.I.T.'s transparent square piston engine. The purpose was to learn more about how the electrode geometry affects the heat losses to the electrodes and the electrical performance of the ignition system, and how this affects the flame development process in an engine. A schlieren system which provides two orthogonal views of the developing flame was used to define the initial flame growth process, for as many as 100 consecutive cycles. Voltage and current waveforms were recorded to characterize the spark discharge, and cylinder pressure data were used to characterize the engine performance. The spark plug with the smaller electrodes was shown to reduce the heat losses to the electrodes, and thereby extend the stable operating regime of the engine. At conditions close to the stable operating limit, cycle-by-cycle variations in heat losses cause significant cyclic variations in flame development.
Technical Paper

Intake Port Phenomena in a Spark-Ignition Engine at Part Load

1991-10-01
912401
The flow and heat transfer phenomena in the intake port of a spark ignition engine with port fuel injection play a significant role in the mixture preparation process, especially at part load. The backflow of the hot burned gas from the cylinder into the intake port when the intake valve is opened breaks up any liquid film around the inlet valve, influences gas and wall temperatures, and has a major effect on the fuel vaporization process. The backflow of in-cylinder mixture with its residual component during the compression stroke prior to inlet valve closing fills part of the port with gas at higher than fresh mixture temperature. To quantify these phenomena, time-resolved measurements of the hydrocarbon concentration profile along the center-line of the intake port were made with a fast-response flame ionization detector, and of the gas temperature with a fine wire resistance thermometer, in a single-cylinder engine running with premixed propane/air mixture.
Technical Paper

Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept

2004-03-08
2004-01-0975
Experiments were performed to identify the knock trends of lean hydrocarbon-air mixtures, and such mixtures enhanced with hydrogen (H2) and carbon monoxide (CO). These enhanced mixtures simulated 15% and 30% of the engine's gasoline being reformed in a plasmatron fuel reformer [1]. Knock trends were determined by measuring the octane number (ON) of the primary reference fuel (mixture of isooctane and n-heptane) supplied to the engine that just produced audible knock. Experimental results show that leaner operation does not decrease the knock tendency of an engine under conditions where a fixed output torque is maintained; rather it slightly increases the octane requirement. The knock tendency does decrease with lean operation when the intake pressure is held constant, but engine torque is then reduced.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

Models for Heat Transfer, Mixing and Hydrocarbon Oxidation in a Exhaust Port of a Spark-Ignited Engine

1980-02-01
800290
The fate of hydrocarbon species in the exhaust systems of spark-ignition engines is an important part of the overall hydrocarbon emissions problem. In this investigation models were developed for the instantaneous heat transfer, fluid mixing, and hydrocarbon oxidation in an engine exhaust port. Experimental measurements were obtained for the instantaneous cylinder pressure and instantaneous gas temperature at the exhaust port exit for a range of engine operating conditions. These measurements were used to validate the heat transfer model and to provide data on the instantaneous cylinder gas state for a series of illustrative exhaust port hydrocarbon oxidation computations as a function of engine operating and design variables. During much of the exhaust process, the exhaust port heat transfer was dominated by large-scale fluid motion generated by the jet-like flow at the exhaust valve.
Technical Paper

Predicting the Effects of Air and Coolant Temperature, Deposits, Spark Timing and Speed on Knock in Spark Ignition Engines

1992-10-01
922324
The prediction of knock onset in spark-ignition engines requires a chemical model for the autoignition of the hydrocarbon fuel-air mixture, and a description of the unburned end-gas thermal state. Previous studies have shown that a reduced chemistry model developed by Keck et al. adequately predicts the initiation of autoignition. However, the combined effects of heat transfer and compression on the state of the end gas have not been thoroughly investigated. The importance of end-gas heat transfer was studied with the objective of improving the ability of our knock model to predict knock onset over a wide range of engine conditions. This was achieved through changing the thermal environment of the end gas by either varying the inlet air temperature or the coolant temperature. Results show that there is significant heating of the in-cylinder charge during intake and a substantial part of the compression process.
Technical Paper

Predicting the Emissions and Performance Characteristics of a Wankel Engine

1974-02-01
740186
A performance model of a Wankel engine is developed which performs a leakage mass balance, accounts for heat transfer and flame quenching, and predicts the mass fraction burned as a function of chamber pressure. Experiments were performed on a production Wankel engine to obtain chamber pressure-time diagrams, and engine performance and emissions data. Model predictions of mass burned, global heat transfer, and hydrocarbon emission gave good agreement with measurements. Predictions of oxides of nitrogen are higher than measurements, especially at low loads. This is thought to be due to the adiabatic core gas assumption in the model. The need for a Wankel boundary layer study is identified.
X