Refine Your Search

Search Results

Technical Paper

A Model for Converting SI Engine Flame Arrival Signals into Flame Contours

A model which converts flame arrival times at a head gasket ionization probe, used in a spark-ignition engine, into flame contours has been developed. The head gasket was manufactured at MIT using printed circuit board techniques. It has eight electrodes symmetrically spaced around the circumference (top of cylinder liner) and it replaces the conventional head gasket. The model is based on engine flame propagation rate data taken from the literature. Data from optical studies of S.I. engine combustion or studies utilizing optical fiber or ionization probe diagnostics were analyzed in terms of the apparent flame speed and the entrainment speed (flame speed relative to the fluid ahead of the flame). This gives a scaling relationship between the flame speed and the mass fraction burned which is generic and independent of the chamber shape.
Technical Paper

A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces

A complete one-dimensional mixed lubrication model has been developed to predict oil film thickness and friction of the piston ring-pack. An average flow model and a roughness contact model are used to consider the effects of surface roughness on both hydrodynamic and boundary lubrication. Effects of shear-thinning and liner temperature on lubricant viscosity are included. An inlet condition is applied by considering the unsteady wetting location at the leading edge of the ring. A ‘film non-separation’ exit condition is proposed to replace Reynolds exit condition when the oil squeezing becomes dominant. Three lubrication modes are considered in the model, namely, pure hydrodynamic, mixed, and pure boundary lubrication. All of these considerations are crucial for studying the oil transport, asperity contact, and friction especially in the top dead center (TDC) region where the oil control ring cannot reach.
Technical Paper

A Rapid Compression Machine Study of the Influence of Charge Temperature on Diesel Combustion

Difficulties in the starting and operation of diesel engines at low temperatures are an important consideration in their design and operation, and in selection of the fuels for their use. Improvements in operation have been achieved primarily through external components of the engine and associated subsystems. A Rapid Compression Machine (RCM) has been modified to operate over a wide range of temperatures (−20°C to 100°C). It is used to isolate the combustion chamber in an environment in which all significant parameters are carefully defined and monitored. The influence of temperature and cetane number on the ignition and combustion processes are analyzed. Examination of the combustion characteristics show that temperature is by far the most influential factor affecting both ignition delay and heat release profiles. Cetane number (ASTM D-613) is not found to be a strong indicator of ignition delay for the conditions investigated.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

A Study of Flame Development and Engine Performance with Breakdown Ignition Systems in a Visualization Engine

A conventional coil ignition system and two breakdown ignition systems with different electrode configurations were compared in M.I.T.'s transparent square piston engine. The purpose was to gain a deeper understanding of how the breakdown and glow discharge phases affect flame development and engine performance. The engine was operated with a standard intake valve and with a shrouded intake valve to vary the characteristic burning rate of the engine. Cylinder pressure data were used to characterize the ignition-system performance. A newly developed schlieren system which provides two orthogonal views of the developing flame was used to define the initial flame growth process. The study shows that ignition systems with higher breakdown energy achieve a faster flame growth during the first 0.5 ms after spark onset for all conditions studied.
Technical Paper

An Improved Friction Model for Spark-Ignition Engines

A spark-ignition engine friction model developed by Patton et al. in the late 1980s was evaluated against current engine friction data, and improved. The model, which was based on a combination of fundamental scaling laws and empirical results, includes predictions of rubbing losses from the crankshaft, reciprocating, and valvetrain components, auxiliary losses from engine accessories, and pumping losses from the intake and exhaust systems. These predictions were based on engine friction data collected between 1980 and 1988. Some of the terms are derived from lubrication theory. Other terms were derived empirically from measurements of individual friction components from engine teardown experiments. Recent engine developments (e.g., improved oils, surface finish on piston liners, valve train mechanisms) suggested that the model needed updating.
Technical Paper

Analysis of Hydrocarbon Emissions Mechanisms in a Direct Injection Spark-Ignition Engine

The direct injection spark-ignition engine is the only internal combustion engine with the potential to equal the efficiency of the diesel and to tolerate a wide range of fuel types and fuel qualities without deterioration of performance. However, this engine has low combustion efficiency and excessive hydrocarbon emissions when operating at light load. In this paper, potential sources of hydrocarbon emissions during light load operation are postulated and analyzed. The placement of fuel away from the primary combustion process in conjunction with a lack of secondary burnup are isolated as important hydrocarbon emissions mechanisms. Analyses show that increasing cylinder gas temperatures can improve secondary burnup of fuel which would reduce hydrocarbon emissions. Practical means to achieve this include higher compression ratio and use of ceramic parts in the combustion chamber.
Technical Paper

Analysis of Oil Consumption Behavior during Ramp Transients in a Production Spark Ignition Engine

Engine oil consumption is recognized to be a significant source of pollutant emissions. Unburned or partially burned oil in the exhaust gases contributes directly to hydrocarbon and particulate emissions. In addition, chemical compounds present in oil additives poison catalytic converters and reduce their conversion efficiency. Oil consumption can increase significantly during critical non-steady operating conditions. This study analyzes the oil consumption behavior during ramp transients in load by combining oil consumption measurements, in-cylinder measurements, and computer-based modeling. A sulfur based oil consumption method was used to measure real-time oil consumption during ramp transients in load at constant speed in a production spark ignition engine. Additionally in-cylinder liquid oil behavior along the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique.
Technical Paper

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

A dynamometer-mounted four-cylinder Saturn engine was used to accumulate combustion chamber deposits (CCD), using an additized fuel. During each deposit accumulation test, the HC emissions were continuously measured. The deposit thickness at the center of the piston was measured at the beginning of each day. After the 50 and 35-hour tests, HC emissions were measured with isooctane, benzene, toluene, and xylene, with the deposited engine, and again after the deposits had been cleaned from the engine. The HC emissions showed a rapid rise in the first 10 to 15 hours and stabilization after about 25 hours of deposit accumulation. The HC increase due to CCD accumulation accounted for 10 to 20% of the total engine-out HC emissions from the deposit build-up fuel and 10 to 30% from benzene, isooctane, toluene, and xylene, making CCDs a significant HC emissions source from this engine. The HC emissions stabilized long before the deposit thickness.
Technical Paper

Combustion Characterization in a Direct-Injection Stratified-Charge Engine and Implications on Hydrocarbon Emissions

An experimental study was conducted on a direct-injection stratified-charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System and operated with gasoline. Analysis of the injected fuel flow and the heat release showed that the combustion process was characterized by three distinct phases: fuel injection and distribution around the piston bowl, flame propagation through the stratified fuel-air mixture, and mixing-controlled burn-out with the heat-release rate proportional to the amount of unburned fuel in the combustion chamber. This characterization was consistent with previous visualization studies conducted on rapid-compression machines with similar configurations. Experiments with varied injection timing, spark plug location, and spark timing showed that the combustion timing relative to injection was critical to the hydrocarbon emissions from the engine.
Technical Paper

Early Flame Development and Burning Rates in Spark Ignition Engines and Their Cyclic Variability

Experiments by Gatowski and Heywood have been analyzed to obtain both qualitative and quantitative information on early flame development and burning rates in a square piston premixed spark-ignition engine. Flame growth was observed using high speed Schlieren photography and simultaneous pressure records were obtained using piezo-electric transducers. To study the effects of in-cylinder gas motion several combinations of shrouded and unshrouded inlet valves, and flat and stepped pistons were used. Spark position was also varied. The analysis supports the wrinkled laminar flame model of turbulent flame structure in spark-ignition engines. It also suggests that cycle-by-cycle variations in the growth rate and location of the flame kernel at very early times are the major cause of cycle-by-cycle pressure variations in spark-ignition engines.
Technical Paper

Effect of In-Cylinder Liquid Fuel Films on Engine-Out Unburned Hydrocarbon Emissions for an SI Engine

An experimental study was performed in a firing SI engine at conditions representative of the warmup phase of operation in which liquid gasoline films were established at various locations in the combustion chamber and the resulting impact on hydrocarbon emissions was assessed. Unique about this study was that it combined, in a firing engine environment, direct visual observation of the liquid fuel films, measurements of the temperatures these films were subjected to, and the determination from gas analyzers of burned and unburned fuel quantities exiting the combustion chamber - all with cycle-level resolution or better. A means of deducing the exhaust hydrocarbon emissions that were due to the liquid fuel films in the combustion chamber was developed. An increase in exhaust hydrocarbon emissions was always observed with liquid fuel films present in the combustion chamber.
Technical Paper

Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine

The wear patterns of the rings and grooves of a diesel engine were analyzed by using a ring dynamics/gas flow model and a ring-pack oil film thickness model. The analysis focused primarily on the contact pressure distribution on the ring sides and grooves as well as on the contact location on the ring running surfaces. Analysis was performed for both new and worn ring/groove profiles. Calculated results are consistent with the measured wear patterns. The effects of groove tilt and static twist on the development of wear patterns on the ring sides, grooves, and ring running surfaces were studied. Ring flutter was observed from the calculation and its effect on oil transport was discussed. Up-scraping of the top ring was studied by considering ring dynamic twist and piston tilt. This work shows that the models used have potential for providing practical guidance to optimizing the ring pack and ring grooves to control wear and reduce oil consumption.
Technical Paper

Effects of Valve-Shrouding and Squish on Combustion in a Spark-ignition Engine

The effects of two commonly used methods for altering the combustion process in a spark-ignition engine are examined using pressure measurements and high-speed schlieren photography. A square cross-section visualization engine with two quartz sidewalls was used to allow optical access over the entire four-stroke operating cycle. Engine operation with a shrouded intake valve, which changed the intake-generated flow, and with a stepped piston, which changed the compression-generated flow, are compared to a base condition. In addition, cyclic variations in burning are examined for all cases.
Technical Paper

Engine Knock Characteristics at the Audible Level

The effects of combustion chamber and intake valve deposit build-up on the knocking characteristics of a spark ignition engine were studied. A Chrysler 2.2 liter engine was run continuously for 180 hours to build up intake valve and combustion chamber deposits. In the tests reported here, the gasoline used contained a deposit controlling fuel additive. The engines's octane requirement increased by 10 research octane numbers during this extended engine operating period. At approximately 24 hour intervals during these tests, the engine was audibly knock rated to determine its octane requirement. Cylinder pressure data was collected during knocking conditions to investigate the knocking characteristics of each cylinder, and deposit build-up effects on those statistics. Cylinder-to-cylinder variations in knock statistics were studied. Analysis of the data indicated that some 20 to 40 percent of cycles knock before the knock is audibly detected.
Technical Paper

Evaporation of In-Cylinder Liquid Fuel Droplets in an SI Engine: A Diagnostic-Based Modeling Study

Liquid fuel behavior in the cylinder impacts SI engine HC emissions particularly during engine start-up. Inflow of liquid fuel into the cylinder is largely determined by the flow and temperature environment in the intake port. Subsequent evaporation of fuel droplets in the cylinder prior to impact on the piston and cylinder liner reduces the amount of liquid fuel in the cylinder that is likely to contribute to HC emission and is therefore important. In this study, measurements of liquid fuel droplet characteristics in the vicinity of the intake valve of a firing SI engine were analyzed to estimate the amount and spatial distribution of in-cylinder evaporation of liquid fuel prior to droplet impact on the cylinder liner or piston. A one-dimensional fuel droplet evaporation model was developed to predict the amount of fuel evaporation given measured fuel droplet sizes and velocities, intake port and valve temperatures during warm up, and cylinder geometry.
Technical Paper

Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power

The flow into and out of the piston top-land crevice of a spark-ignition engine has been studied, using a square-cross-section single-cylinder engine with two parallel quartz glass walls which permit optical access to the entire cylinder volume. Schlieren short-time exposure photographs and high speed movies were used to define the essential features of this flow. The top-land crevice and the regions behind and between the rings consist of volumes connected through the ring gaps. A system model of volumes and orifices was therefore developed and used to predict the flow into and out of the crevice regions between the piston, piston rings and cylinder wall.
Technical Paper

How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine

A conventional spark plug and a spark plug with smaller electrodes were studied in M.I.T.'s transparent square piston engine. The purpose was to learn more about how the electrode geometry affects the heat losses to the electrodes and the electrical performance of the ignition system, and how this affects the flame development process in an engine. A schlieren system which provides two orthogonal views of the developing flame was used to define the initial flame growth process, for as many as 100 consecutive cycles. Voltage and current waveforms were recorded to characterize the spark discharge, and cylinder pressure data were used to characterize the engine performance. The spark plug with the smaller electrodes was shown to reduce the heat losses to the electrodes, and thereby extend the stable operating regime of the engine. At conditions close to the stable operating limit, cycle-by-cycle variations in heat losses cause significant cyclic variations in flame development.
Technical Paper

Measurement of Gasoline Absorption into Engine Lubricating Oil

A method to collect and speciate the components of gasoline absorbed in the lubricant oil using gas chromatography has been developed. Samples were collected continuously from the piston skirt, baffle and sump in a Saturn engine. A long (18 hours) test was performed to determine the build up of hydrocarbons in the sump, and a shorter (25 min) test was performed to determine the build up of hydrocarbons in the piston skirt and baffle during engine warm-up. The first experiment showed that the total hydrocarbon concentration in the sump oil reached a steady state of about 1.35% mass fraction after 11 hours of engine operation. The relative concentration of individual fuel hydrocarbon species absorbed in the oil increases exponentially with boiling point. Most of the identified species in the oil consist of the heavy end aromatics. Similar compositions but lower concentrations were found for samples collected from the piston skirt during engine warm-up.
Technical Paper

Mixture Preparation Mechanisms in a Port Fuel Injected Engine

An experimental study was carried out that qualitatively examined the mixture preparation process in port fuel injected engines. The primary variables in this study were intake valve lift, intake valve timing, injector spray quality, and injection timing. A special visualization engine was used to obtain high-speed videos of the fuel-air mixture flowing through the intake valve, as well as the wetting of the intake valve and head in the combustion chamber. Additionally, videos were taken from within the intake port using a borescope to examine liquid fuel distribution in the port. Finally, a simulation study was carried out in order to understand how the various combinations of intake valve lifts and timings affect the flow velocity through the intake valve gap to aid in the interpretation of the videos.