Refine Your Search

Search Results

Technical Paper

A New Model of Traumatic Axonal Injury to Determine the Effects of Strain and Displacement Rates

2006-11-06
2006-22-0023
Traumatic brain injury (TBI) continues to be a major health problem, with over 500,000 cases per year with a societal cost of approximately $85 billion in the US. Motor vehicle accidents are the leading cause of such injuries. In many cases of TBI widespread disruption of the axons occurs through a process known as diffuse axonal injury (DAI) or traumatic axonal injury (TAI). In the current study, an in vivo TAI model was developed using spinal nerve roots of adult rats. This model was used to determine functional and structural responses of axons to various strains and displacement rates. Fifty-six L5 dorsal nerve roots were each subjected to a predetermined strain range (<10%, 10-20% and >20%) at a specified displacement rate (0.01 mm/sec and 15 mm/sec) only once. Image analysis was used to determine actual strains on the roots during the pull.
Technical Paper

Abdominal Injury and Response in Side Impact

1996-11-01
962410
The purpose of this paper is to address abdominal injury and response in cadaver whole body side impacts and abdominal injury risk functions in SID and BIOSID in whole body impacts. Side impact sled tests were performed at Wayne State University using cadavers, SID and BIOSID, with response measured at the shoulder, thorax, abdominal and pelvic levels. The data at the abdominal level are presented here. These data provide further understanding of abdominal tolerance and response in lateral impact and the ability of side impact dummies to predict abdominal injury. In addition, the padding data provide insight into tolerable armrest loads.
Technical Paper

An Analysis of Traumatic Rupture of the Aorta in Side Impact Sled Tests

2005-04-11
2005-01-0304
Traumatic rupture of the aorta (TRA) is a leading cause of death in high velocity blunt trauma, particularly motor vehicle accidents. However, little is understood about the mechanisms of TRA and thus, the opportunities to prevent TRA in the motor vehicle environment are compromised. The objective of this study was to determine the relationship between impact response and TRA through analyses of data from cadaver tests that successfully produced TRA in lateral impacts. Seventeen Heidelberg-style side impact sled tests were conducted using unembalmed human cadavers. Three sled speeds were used: 6.7, 9.0, and 10.5 m/s. Three barrier configurations were used: rigid flat wall, rigid wall with a 152-mm offset toward the pelvis, and a flat wall with padding of varying stiffness. Multiple load and acceleration measurements were made on the barrier and cadaver. Potential injury parameters were evaluated and their relative predictive abilities were examined.
Technical Paper

An Evaluation of TTI and ASA in SID Side Impact Sled Tests

1994-11-01
942225
Thirty-seven SID side impact sled tests were performed using a rigid wall and a padded wall with fourteen different padding configurations. The Thoracic Trauma Index (TTI) and Average Spine Acceleration (ASA) were measured in each test. TTI and ASA were evaluated in terms of their ability to predict injury in identical cadaver tests and in terms of their ability to predict the harm or benefit of padding of different crush strengths. SID ASA predicted the injury seen in WSU-CDC cadaver tests better than SID TTI. SID ASA predicted that padding of greater than 20 psi crush strength is harmful (ASA > 40 g's). SID TTI predicted that padding of greater than 20 psi crush strength is beneficial (TTI < 85 g's). SID TTI predicts the benefit of lower impact velocity. However, SID ASA appears more useful in assessing the harm or benefit of door padding or air bags.
Technical Paper

Biomechanical Response and Injury Tolerance of the Pelvis in Twelve Sled Side Impacts

1990-10-01
902305
Twelve side impact sled tests were performed using a horizontally accelerated sled and a Heidelberg-type seat fixture. The purpose of these tests was to better understand biomechanical response and injury tolerance in whole-body side impacts. In these tests the subject's whole body impacted a sidewall with one of three surface conditions: 1) a flat, rigid side wall, 2) a side wall with a 6″ pelvic offset, or 3) a flat, padded side wall. This paper presents the biomechanical response and injury tolerance data obtained for the pelvis. Peak values of sacral-y acceleration, pelvic force, compression and velocity x compression were evaluated as predictors of pelvic injury. Based on Logist analysis, Vmax x Cmax was the best predictor of probability of pelvic fracture in this test series, while peak pelvic force and peak compression also performed well.
Technical Paper

Biomechanical Response and Injury Tolerance of the Thorax in Twelve Sled Side Impacts

1990-10-01
902307
Twelve side impact sled tests were performed using a horizontally accelerated sled and a Heidelberg-type seat fixture. In these tests the subject's whole body impacted a sidewall with one of three surface conditions: 1) a flat, rigid side wall, 2) a side wall with a 6″ pelvic offset, or 3) a flat, padded side wall. This series of runs provided a good test of how injury criteria perform under a variety of impact surface conditions. In this study thoracic injury criteria based on force, acceleration, compression, and velocity x compression (VC) were evaluated. Maximum compression and VCmax proved to be the best injury indicators in this series. Biomechanical response and injury tolerance are also presented.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Development of a Sled-to-Sled Subsystem Side Impact Test Methodology

1997-02-24
970569
A sled-to-sled subsystem side impact test methodology has been developed by using two sleds at the WSU Bioengineering Center in order to simulate a car-to-car side impact, particularly in regards to the door velocity profile. Initially this study concentrated on tailoring door pulse to match the inner door velocity profile from FMVSS 214 full-scale dynamic side impact tests. This test device simulates a pulse quite similar to a typical door velocity of a full size car in a dynamic side impact test. Using the newly developed side impact test device three runs with a SID dummy were performed to study the effects of door padding and spacing in a real side impact situation. This paper describes the test methodology to simulate door intrusion velocity profiles in side impact and discusses SID dummy test results for different padding conditions.
Technical Paper

Displacement Responses of the Shoulder and Thorax in Lateral Sled Impacts

1993-11-01
933124
Three-dimensional film analysis was used to study the response of the shoulder and thoracic skeleton of cadavers to lateral sled tests conducted at Wayne State University. The response of the shoulder structure was of particular interest, although, it is perhaps the most difficult skeletal structure to track in a side impact. Results of the three-dimensional film analysis are given for rigid impacts at 6.7 and 9.1 meters per second, and for padded impacts averaging 9 meters per second. Results from a two-dimensional film analysis are included for the impacted clavicle which could not be tracked by the three-dimensional film analysis. Displacements at various locations on the shoulder and thoracic skeleton were normalized to estimate the response of a fiftieth percentile male.
Technical Paper

Facial Impact Tolerance and Response

1986-10-27
861896
Facial impact experiments were conducted on eleven unembalmed human cadavers. A 32 kg or 64 kg impactor with a 25 mm diameter, rigid, cylindrical contact surface was oriented in the left-right direction relative to the face and contacted the nose at the elevation of the infraorbital margins. The impactor was propelled toward the race along an anterior-to-posterior path, with contact velocities ranging from 10 to 26 km/h. Accelerometers mounted on the impactor and the occiput provided data for analyzing the dynamics of the impacts. While the threshold for nasal bone fractures was not determined, it appears that a peak force of about 3 kN (filtered 180 Hz) is a representative threshold for more severe fracture patterns. A preliminary dynamic force vs penetration response specification for the above mode of loading is offered.
Technical Paper

Finite Element Modeling of Gross Motion of Human Cadavers in Side Impact

1994-11-01
942207
Seventeen Heidelberg type cadaveric side impact sled tests, two sled-to-sled tests, and forty-four pendulum tests have been conducted at Wayne State University, to determine human responses and tolerances in lateral collisions. This paper describes the development of a simplified finite element model of a human occupant in a side impact configuration to simulate those cadaveric experiments. The twelve ribs were modeled by shell elements. The visceral contents were modeled as an elastic solid accompanied by an array of discrete dampers. Bone condition factors were obtained after autopsy to provide material properties for the model. The major parameters used for comparison are contact forces at the level of shoulder, thorax, abdomen and pelvis, lateral accelerations of ribs 4 and 8 and of T12, thoracic compression and injury functions V*C, TTI and ASA.
Technical Paper

Injury Predictors for Traumatic Axonal Injury in a Rodent Head Impact Acceleration Model

2011-11-07
2011-22-0002
A modified Marmarou impact acceleration injury model was developed to study the kinematics of the rat head to quantify traumatic axonal injury (TAI) in the corpus callosum (CC) and brainstem pyramidal tract (Py), to determine injury predictors and to establish injury thresholds for severe TAI. Thirty-one anesthetized male Sprague-Dawley rats (392 ± 13 grams) were impacted using a modified impact acceleration injury device from 2.25 m and 1.25 m heights. Beta-amyloid precursor protein (β-APP) immunocytochemistry was used to assess and quantify axonal changes in CC and Py. Over 600 injury maps in CC and Py were constructed in the 31 impacted rats. TAI distribution along the rostro-caudal direction in CC and Py was determined. Linear and angular responses of the rat head were monitored and measured in vivo with an attached accelerometer and angular rate sensor, and were correlated to TAI data.
Technical Paper

Injury and Response of the Shoulder in Lateral Sled Tests

2001-11-01
2001-22-0005
The biomechanical response and injury tolerance of the shoulder in lateral impacts is not well understood. These data are needed to better understand human injury tolerance, validate finite element models and develop biofidelic shoulders in side impact dummies. Seventeen side impact sled tests were performed with unembalmed human cadavers. Data analyzed for this study include T1-Y acceleration, shoulder and thoracic load plate forces, upper sternum x and y accelerations, and struck side acromion x, y and z accelerations. One dimensional deflection at the shoulder level was determined from high-speed film by measuring the distance between a target on T1 and the impacted wall. Force-time response corridors were obtained for tests with 9 m/s pelvic offset, 10.5 m/s pelvic offset, 9 m/s unpadded flat wall, 6.7 m/s unpadded flat wall, 9 m/s soft padding and 9 m/s stiff padding. Maximum shoulder plate forces in unpadded 9 m/s tests (5.5 kN) were larger than in 6.7 m/s tests (3.3 kN).
Technical Paper

Lower Abdominal Tolerance and Response

1986-10-27
861878
Twelve unembalmed human cadavers were tested for lower abdominal injury tolerance and mechanical response. The impacts were in an anterior-to-posterior direction and the level of impact was primarily in the lower abdomen at the L3 level of the lumbar spine. The impactor mass was either 32 kg or 64 kg. The impactor face was a 25 mm diameter aluminum bar, with the long axis of the bar parallel to the width of the cadaver body. In this paper, mechanical response is presented in terms of force-time and penetration-time histories, and force vs. abdominal penetration cross-plots. Injury tolerance is described in terms of post-impact necropsy findings and AIS ratings. Based on our studies, the lower abdomen of the unembalmed human cadaver is much less stiff than is suggested by previous research, and the stiffness is velocity and mass dependent, as is suggested by the correlation coefficients presented in this paper. Force-time history and force-penetration response corridors are presented.
Technical Paper

Lumbar Support Prominence and Vertical Position Measurement Methods in an Occupied Seat

2006-04-03
2006-01-1300
In the automotive seating industry measurements of lumbar support prominence and height are performed to assess their effects on occupant comfort. This project investigated measurement methods for lumbar support prominence and height in an occupied seat. Fifteen participants provided subjective responses of their perceived lumbar support prominence and height utilizing specifically developed visual analog scales. Also, pressure measurements were taken while the participants were seated. The recently developed H-point manikin II was utilized as a standardized sitter. Specifically, the lumbar support prominence (LSP) measure was used for the prominence measures. Pressure mat readings with the seated manikin was used for lumbar support height determination and prominence correlations. With both manikin and participants in the seat, the lumbar support was digitized through the rear of the seat.
Technical Paper

Muscular Response to Physiologic Tensile Stretch of the Caprine C5/6 Facet Joint Capsule: Dynamic Recruitment Thresholds and Latencies

2011-11-07
2011-22-0016
This study examined the cervical muscle response to physiologic, high-rate (100 mm/s) tensile facet joint capsule (FJC) stretch. Six in-vivo caprine C5/6 FJC preparations were subjected to an incremental tensile loading paradigm. EMG activity was recorded from the right trapezius (TR) and multifidus (MF) muscle groups at the C5 and C6 levels; and from the sternomastoid (SM) and longus colli (LC) muscle groups bilaterally at the C5/6 level; during FJC stretch. Capsule load during the displacement applications was recorded via a miniature load cell, and 3D capsule strains (based on stereoimaging of an array of markers on the capsule surface) were reconstructed using finite element methods. EMG traces from each muscle were examined for onset of muscular activity. Capsule strains and loads at the time of EMG onset were recorded for each muscle, as was the time from the onset of FJC stretch to the onset of muscle activity. All muscles were responsive to physiologic high-rate FJC stretch.
Technical Paper

Neural Response of Cervical Facet Joint Capsule to Stretch: A Study of Whiplash Pain Mechanism

2005-11-09
2005-22-0003
Cervical facet joints are implicated as a major source of pain after whiplash injury. The purpose of this study was to investigate the proposed capsule strain injury mechanism of whiplash pain using neurophysiologic methods. Strain thresholds, threshold distribution, saturation strains and afterdischarge responses of capsule neural receptors were characterized in vivo. Goat C5-C6 facet joint capsules were used to identify and characterize capsule receptors in response to controlled uniaxial stretch by recording C6 dorsal rootlet nerve discharge. The joints were stretched at 0.5 mm/sec in a series of tests with 2 mm increments until the capsule ruptured. Ninety-two identified units were responsive to physiologic or noxious stretch while 28 were silent receptors. Among the 50 characterized responsive units, 42 showed low strain thresholds at 10.2±4.6% while 8 had high strain thresholds at 47.2±9.6%.
Technical Paper

Performance and Mechanical Properties of Various Padding Materials Used in Cadaveric Side Impact Sled Tests

1992-02-01
920354
Various types of padding have been used in side impact sled tests with cadavers. This paper presents a summary of performance of the padding used in NHTSA and WSU/CDC sled tests, and a summary of material properties of padding used in cadaveric sled tests. The purpose of this paper is to provide information on padding performance in cadavers, rather than optimum padding performance in dummies.
X