Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Changes in Vehicle Designs from Frontal Offset and Side Impact Crash Testing

2003-03-03
2003-01-0902
The Insurance Institute for Highway Safety (IIHS) has been conducting frontal offset crash tests of new passenger vehicles and providing comparative crashworthiness information to the public since 1995. This program has resulted in large improvements in frontal crashworthiness largely because vehicle structures have been redesigned to prevent significant collapse of the occupant compartment. In late 2002, IIHS began a side impact crash test program in which the side-impacting barrier has been designed to simulate the geometry of the front ends of SUVs and pickups, which pose a much larger threat in side impacts than the lower front ends of cars. It is anticipated that this program, too, will result in changes in vehicle structure, in this case the structure of the vehicle side pillars and door hardware. Good performance in the side impact test also is likely to require installation of side airbags (or comparable system) to protect the head and/or chest.
Technical Paper

Comparison of EuroSID-2 and SID-IIs in Vehicle Side Impact Tests with the IIHS Barrier

2002-11-11
2002-22-0019
The Insurance Institute for Highway Safety (IIHS) has recently developed and evaluated a new side impact barrier to represent the front profile of pickup trucks and sport utility vehicles for a new consumer information program. In the development of this program, two dummies were considered for assessing driver injury risk in side-struck vehicles: EuroSID-2 (50th percentile male dummy) and SID-IIs (5th percentile female dummy). The purpose of this study was to compare injury responses and kinematics for these two dummies in side impact crash tests. The findings suggest that SID-IIs will be more effective in driving relevant improvements in side impact crash protection.
Technical Paper

Comparison of Hybrid III and THOR Dummies in Paired Small Overlap Tests

2011-11-07
2011-22-0014
The Insurance Institute for Highway Safety (IIHS) is investigating small overlap crash test procedures for a possible consumer information program. Analysis of real-world small overlap crashes found a strong relationship between serious head and chest injuries and occupant compartment intrusion. The main sources of serious head injuries were from the A-pillar, dash panel, or door structure, suggesting head trajectories forward and outboard possibly bypassing the airbag. Chest injuries mainly were from steering wheel intrusion and seat belt loading. In developing this program, two test dummies were evaluated for predicting occupant injury risk: midsize male Hybrid III and THOR. In the collinear small overlap crash tests conducted here, results from the two dummies were similar. Both predicted a low risk of injury to the head and chest and sometimes a high risk of injury to the lower extremities. Head and torso kinematics also were similar between dummies.
Technical Paper

Corner Protection in Low-Speed Crashes

2007-04-16
2007-01-1760
Recent estimates of the annual cost to repair vehicle damage from motor vehicle crashes ranges from $17 billion (£9.1 billion) paid by U.K insurers to $45 billion paid by U.S. insurers. Many of these repairs were for damage sustained in low-speed front and rear impacts, with the majority costing less than $2, 500 to repair in both countries. In about a quarter of all claims the damage is limited to the vehicle corners and vehicle bumpers should prevent or limit much of the damage sustained in these minor crashes. However, many vehicles do not have bumper reinforcement beams that extend laterally much beyond the frame rails, leaving expensive vehicle components such as headlamps and fenders (wings) unprotected. Research by IIHS and Thatcham shows that 15 percent overlap front and rear crash tests at 5 km/h into a bumper-shaped barrier produce vehicle damage similar to that seen in real-world crashes and in vehicle-to-vehicle front-to-rear crash tests with low overlap.
Technical Paper

Crash Compatibility Issue in Perspective

2000-03-06
2000-01-1378
Despite extensive media coverage to the contrary, mismatches among cars, utility vehicles, and pickups in crashes is not a big problem from a societal perspective. On the other hand, if you are riding in a small car that is about to be hit by a big utility vehicle, then the problem looms large. Crash compatibility has attracted a lot of attention lately because utility vehicles have become so popular. The concern is that their designs pose a threat to people riding in smaller cars. But the fact is, two-vehicle collisions between cars (including passenger vans) and utility vehicles or pickups account for only about 15 percent of all car occupant deaths. As a result, countermeasures that focus on making utility vehicles and pickups more crash compatible, however appropriate, can have only small effects on crash injuries and fatalities. On the other hand, improvements in crashworthiness not only reduce crash incompatibilities but also protect across a wider spectrum of crashes.
Technical Paper

EFFECTS OF GEOMETRY AND STIFFNESS ON THE FRONTAL COMPATIBILITY OF UTILITY VEHICLES

2001-06-04
2001-06-0078
The issue of vehicle incompatibility, especially between passenger cars and utility vehicles/pickup trucks, has received a lot of attention in recent years. Real-world crash data show that occupants of cars are much more likely to be injured in frontal crashes with utility vehicles and pickup trucks than with other passenger cars, even after controlling for vehicle mass. Factors in addition to mass that can influence compatibility are stiffness and geometry. In this paper, the effects of these factors on occupant injury measures and vehicle deformation patterns are examined. The Insurance Institute for Highway Safety conducted a series of car-to-utility-vehicle frontal offset tests with the Ford Taurus as a common collision partner. To vary stiffness, the Taurus collided with either a Mercedes ML320 or a relatively stiffer Isuzu Rodeo.
Technical Paper

Effect of Hybrid III Leg Geometry on Upper Tibia Bending Moments

2001-03-05
2001-01-0169
The knee and ankle joint pivots of the Hybrid III dummy's leg are positioned in approximately the same orientation as the knee and ankle joint rotation centers of a human in a normal driving posture. However, the dummy's leg assembly is not simply a straight member between these two pivots. It is a zigzag-shaped solid link composed of one long straight section in the middle and short angled sections at either end, which form the pivots. The upper and lower tibia load cells are mounted on the straight middle section, making the upper tibia load cell location anterior to the line between the ankle and knee pivots and the lower tibia load cell location slightly posterior to the line between the pivots. Hence, an approximately vertical force on the foot can act along the line behind the upper tibia load cell and in front of the lower tibia load cell, creating bending moments.
Technical Paper

FRONTAL OFFSET DEFORMABLE BARRIER CRASH TESTING AND ITS EFFECT ON VEHICLE STIFFNESS

2001-06-04
2001-06-0109
Since 1995, the Insurance Institute for Highway Safety (IIHS) has evaluated the crashworthiness of more than 120 new vehicle models in a 64 km/h (40 mi/h), 40 percent offset deformable barrier crash test. The offset test is especially demanding of the vehicle structure, requiring only 40 percent of the vehicle width to manage the crash energy. Many of the models originally tested have been redesigned and retested, with the majority producing better structural performance than their predecessors. Critics of such testing have suggested that these tests are forcing vehicle stiffness too high for compatibility with other vehicles and other crash modes. IIHS has studied the relationship between vehicle mass, stiffness, and front-end length to the structural rating in the offset test.
Technical Paper

Factors Contributing to Front-Side Compatibility: a Comparison of Crash Test Results

1999-10-10
99SC02
The occupants of passenger vehicles struck in the side by another vehicle are more likely to be fatally injured than are occupants of the striking vehicle. The risk of fatality in a side-struck car is higher still when the striking vehicle is a pickup or utility vehicle rather than a passenger car of the same mass. This suggests there are other factors inherent to pickup and utility vehicle design in addition to mass that contribute to this increased risk. In this paper, results are presented from a series of six 90-degree, front-to-side crash tests conducted with both vehicles moving. The side-struck vehicle, a Mercury Grand Marquis with a BioSID (biofidelic side impact dummy) in the driver position, was moving at 24 km/h (15 mi/h) in all tests.
Technical Paper

Structural Design Strategies for Improved Small Overlap Crashworthiness Performance

2014-11-10
2014-22-0006
In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications.
Technical Paper

VEHICLE DEFORMATION IN REAL-WORLD SIDE IMPACT CRASHES AND REGULATORY CRASH TESTS

2001-06-04
2001-06-0248
Side impact crashes with fatal or serious injuries were selected from the National Automotive Sampling System/Crashworthiness Data System files. Deformation patterns for the sample of crashes were compared with the damage seen in regulatory tests. In particular, the rate of involvement of the sill and pillar structures was considered. The study suggests these structures are less involved in real crashes than in the current regulatory Federal Motor Vehicle Safety Standard 214 test. Suggestions for altering the test conditions are made.
X