Refine Your Search

Search Results

Technical Paper

A Framework to Study Human Response to Whole Body Vibration

2007-06-12
2007-01-2474
A framework to study the response of seated operators to whole-body vibration (WBV) is presented in this work. The framework consists of (i) a six-degree-of-freedom man-rated motion platform to play back ride files of typical heavy off-road machines; (ii) an optical motion capture system to collect 3D motion data of the operators and the surrounding environment (seat and platform); (iii) a computer skeletal model to embody the tested subjects in terms of their body dimensions, joint centers, and inertia properties; (iv) a marker placement protocol for seated positions that facilitates the process of collecting data of the lower thoracic and the lumbar regions of the spine regardless of the existence of the seatback; and (v) a computer human model to solve the inverse kinematics/dynamic problem for the joint profiles and joint torques. The proposed framework uses experimental data to answer critical questions regarding human response to WBV.
Technical Paper

A Multi-Variable Regression Model for Ergonomic Lifting Analysis with Digital Humans

2008-06-17
2008-01-1909
The Snook tables (Liberty Mutual Tables) are a collection of data sets compiled from studies based on a psychophysical approach to material-handling tasks. These tables are used to determine safe loads for lifting, lowering, carrying pulling, and pushing. The tables take into account different population percentiles, gender, and frequency of activity. However, while using these tables to analyze a work place, Ergonomists often have to select from discrete data points closest to the actual work place parameters thereby reducing accuracy of results. To compound the problem further, multiple interrelated variables are involved, making it difficult to analyze parameters intuitively. For example, it can be difficult to answer questions such as, does reducing the lifting height lower the recommended lifting weight, if the lifting distance is increased? To resolve such issues, this paper presents a new methodology for implementing the Snook tables using multi variable regression.
Technical Paper

A Musculoskeletal Model of the Upper Limb for Real Time Interaction

2007-06-12
2007-01-2488
With the ever-increasing power of real time graphics and computational ability of desktop computers, the desire for a real-time simulation of the musculoskeletal system has become more pronounced. It is important that this simulation is realistic, interactive, runs in real time, and looks realistic, especially in our climate of Hollywood special-effects and stunning video games. An effective simulation of the musculoskeletal system hinges on three key features: accurate modeling of kinematic movement, realistic modeling of the muscle attachment points, and determining the direction of the forces applied at the points. By taking known information about the musculoskeletal system and applying it in a real time environment, we have created such a model of the human arm. This model includes realistic constraints on the joints and real-time wrapping algorithms for muscle action lines.
Technical Paper

A New Discomfort Function for Optimization-Based Posture Prediction

2005-06-14
2005-01-2680
Using multi-objective optimization, we develop a new human performance measure for direct optimizationbased posture prediction that incorporates three key factors associated with musculoskeletal discomfort: 1) the tendency to move different segments of the body sequentially, 2) the tendency to gravitate to a comfortable neutral position, and 3) the discomfort associated with moving while joints are near their respective limits. This performance measure operates in real-time and provides realistic postures. The results are viewed using Santos™, an advanced virtual human, and they are validated using motion-capture. This research lays groundwork for studying how and why humans move as they do.
Technical Paper

A Robust Formulation for Prediction of Human Running

2007-06-12
2007-01-2490
A method to simulate digital human running using an optimization-based approach is presented. The digital human is considered as a mechanical system that includes link lengths, mass moments of inertia, joint torques, and external forces. The problem is formulated as an optimization problem to determine the joint angle profiles. The kinematics analysis of the model is carried out using the Denavit-Hartenberg method. The B-spline approximation is used for discretization of the joint angle profiles, and the recursive formulation is used for the dynamic equilibrium analysis. The equations of motion thus obtained are treated as equality constraints in the optimization process. With this formulation, a method for the integration of constrained equations of motion is not required. This is a unique feature of the present formulation and has advantages for the numerical solution process.
Technical Paper

A Validation Protocol for Predictive Human Locomotion

2008-06-17
2008-01-1855
A framework to validate the predicted motion of a computer human model (Santos) is presented in this work. The proposed validation framework is a task-based methodology. It depends on the comparison of selected motion determinants and joint angles that play major roles in the task, using qualitative and quantitative statistical techniques. In the present work, the validation of Santos walking will be presented. Fortunately, the determinants for normal walking are well defined in the literature and can be represented by (i) hip flexion/extension, (ii) knee flexion/extension, (iii) ankle plantar/dorsiflexion, (iv) pelvic tilt, (v) pelvic rotation, and (vi) lateral pelvic displacement. While Santos is an ongoing research project, the results have shown significant qualitative agreements between the walking determinants of Santos and the walking determinants of four normal subjects.
Technical Paper

Dual-Arm Dynamic Motion Simulation and Prediction of Joint Constraint Loads Using Optimization

2007-06-12
2007-01-2491
Our previous formulation for optimization-based dynamic motion simulation of a serial-link human upper body (from waist to right hand) is extended to predict the motion of a tree-structured human model that includes the torso, right arm, and left arm, with various applied external loads. The dynamics of tree-structured systems is formulated and implemented. The equations of motion for the tree structures must be derived carefully when dealing with the connection link. The optimum solution results show realistic dual-arm human motions and the required joint actuator torques. In the second part of this paper, a new method is introduced in which the constraint forces and moments at the joints are calculated along with the motion and muscle-induced actuator torques. A set of fictitious joints are modeled in addition to the real joints.
Journal Article

Estimation of Mass and Inertia Properties of Human Body Segments for Physics-based Human Modeling and Simulation Applications

2009-06-09
2009-01-2301
This paper describes an effective integrated method for estimation of subject-specific mass, inertia tensor, and center of mass of individual body segments of a digital avatar for use with physics-based digital human modeling simulation environment. One of the main goals of digital human modeling and simulation environments is that a user should be able to change the avatar (from male to female to a child) at any given time. The user should also be able to change the various link dimensions, like lengths of upper and lower arms, lengths of upper and lower legs, etc. These customizations in digital avatar's geometry change the kinematic and dynamic properties of various segments of its body. Hence, the mass and center of mass/inertia data of the segments must be updated before simulating physics-based realistic motions. Most of the current methods use mass and inertia properties calculated from a set of regression equations based on average of some population.
Technical Paper

Layout Design using an Optimization-Based Human Energy Consumption Formulation

2004-06-15
2004-01-2175
An optimization-based method for layout design (also called equipment layout) is presented that is based upon kinetic functions also introduced in this paper. The layout problem is defined by the method whereby positions of target points are specified in the environment surrounding a human. The problem is of importance to ergonomists, vehicle/cockpit packaging engineers, designers of manufacturing assembly lines, and designers concerned with the placement of lever, knobs, and controls in the reachable workspace of a human, but also to users of digital human modeling code, where digital prototyping has become a valuable tool. The method comprises kinematically-driven constraints for reaching the target points and for satisfying the joint ranges of motion. The algorithm is driven by a cost function (also called objective function) that is kinetic in nature to minimize approximate energy consumption and visual discomfort.
Technical Paper

Model Predictive Control for Human Motion Simulation

2009-06-09
2009-01-2306
This paper describes a novel model-based controller designed to simulate human motion in dynamic virtual environments. The controller was tested on SantosTM, the digital human developed at the Virtual Soldier Research Program at the University of Iowa. A planar 3-degrees-of-freedom model of the human arm was used to test the hypothesis. The controller was used to predict on line, optimal torques required to move the end effector towards a target point. The control law was implemented using classical gradient-based optimization and the recently developed technique of model predictive control (MPC). An advantage of MPC is that it replaces intractable closed loop optimization problems with more easily implementable open loop problems. The controller was used to produce physically consistent simulations of the motion of a human arm in a virtual environment in the presence of external disturbances that were not known in advance.
Technical Paper

Motion Prediction and Inverse Dynamics for Human Upper Extremities

2005-04-11
2005-01-1408
Santos™, a digital human avatar developed at The University of Iowa, exhibits extensive modeling and simulation capabilities. Santos™ is a part of a virtual environment for conducting human factors analysis consisting of posture prediction, motion prediction, and ergonomics studies. This paper presents part of the functionality in the Santos™ virtual environment, which is an optimization-based algorithm for simulating dynamic motion of Santos™. The joint torque and muscle power during the motion are also calculated within the algorithm. Mathematical cost functions that evaluate human performance are essential to any effort that would evaluate and compare various ergonomic designs. It is widely accepted that the ergonomic design process is actually an optimization problem with many design variables. This effort is basically a task-based approach that believes humans assume different postures and exert different forces to accomplish different tasks.
Technical Paper

Multiple User Defined End-Effectors with Shared Memory Communication for Posture Prediction

2008-06-17
2008-01-1922
Inverse Kinematics on a human model combined with optimization provides a powerful tool to predict realistic human postures. A human posture prediction tool brings up the need for greater flexibility for the user, as well as efficient computation performance. This paper demonstrates new methods that were developed for the application of digital human simulation as a software package by allowing for any number of user specified end-effectors and increasing communication efficiency for posture prediction. The posture prediction package for the digital human, Santos™, uses optimization constrained by end-effectors on the body with targets in the environment, along with variable cost functions that are minimized, to solve for all joint angles in a human body. This results in realistic human postures which can be used to create optimal designs for things that humans can physically interact with.
Technical Paper

Newly Developed Functionalities for the Virtual Human Santos

2007-04-16
2007-01-0465
This paper presents newly developed capabilities for the virtual human Santos™. Santos is an avatar that has extensive modeling and simulation features. It is a digital human with 109 degrees of freedom (DOF), an optimization-based method, predictive dynamics, and realistic human appearance. The new capabilities include (1) significant progress in predictive dynamics (walking and running), (2) advanced clothing modeling and simulation, (3) muscle wrapping and sliding, and (4) hand biomechanics. With these newly developed functionalities, Santos can simulate various dynamic tasks such as walking and running, investigate clothing restrictions to motion such as joint limits and torques, simulate the musculoskeletal system in real time, predict hand injury by monitoring the joint torques, and facilitate vehicle interior design. Finally, additional on-going projects are summarized.
Technical Paper

Optimization-Based Dynamic Motion Simulation and Energy Expenditure Prediction for a Digital Human

2005-06-14
2005-01-2717
This paper presents an optimization-based algorithm for simulating the dynamic motion of a digital human. We also formulate the metabolic energy expenditure during the motion, which is calculated within our algorithm. This algorithm is implemented and applied to Santos™, an avatar developed at The University of Iowa. Santos™ is a part of a virtual environment for conducting digital human analysis consisting of posture prediction, motion prediction, and physiology studies. This paper demonstrates our dynamic motion algorithm within the Santos™ virtual environment. Mathematical evaluations of human performance are essential to any effort to compare various ergonomic designs. In fact, the human factors design process can be formulated as an optimization problem that maximizes human performance. In particular, an optimal design must be found while taking into consideration the effects of different motions and hand loads corresponding to a number of tasks.
Technical Paper

Optimization-Based Workspace Zone Differentiation and Visualization for Santos™

2006-04-03
2006-01-0696
Human performance measures such as discomfort and joint displacement play an important role in product design. The virtual human Santos™, a new generation of virtual humans developed at the University of Iowa, goes directly to the CAD model to evaluate a design, saving time and money. This paper presents an optimization-based workspace zone differentiation and visualization. Around the workspace of virtual humans, a volume is discretized to small zones and the posture prediction on each central point of the zone will determine whether the points are outside the workspace as well as the values of different objective functions. Visualization of zone differentiation is accomplished by showing different colors based on values of human performance measures on points that are located inside the workspace. The proposed method can subsequently help ergonomic design.
Technical Paper

Optimization-based Dynamic Human Lifting Prediction

2008-06-17
2008-01-1930
In this study, an optimization-based approach for simulating the lifting motion of a three dimensional digital human model is presented. Lifting motion is generated by minimizing a performance measure subjected to basic physical and kinematical constraints. Two performance measures are investigated: one is the dynamic effort; the other is the compression and shear forces on the lumbar joint. The lifting strategies are predicted with different performance measures. The joint strength (torque limit) and the compression and shear force on lumbar joint are also addressed in this study to avoid injury during lifting motion.
Technical Paper

Posture Prediction and Force/Torque Analysis for Human Hands

2006-07-04
2006-01-2326
Human hands are the bridge between humans and the objects to be manipulated or grasped both in the real and virtual world. Hands are used to grasp or manipulate objects and one of the most important functionalities is to position the fingers, i.e., given the position of the fingertip and to determine the joint angles. Last year we presented a 25-degree of freedom (DOF) hand model that has palm arch functionality. In this paper we preset an optimization-based inverse kinematics approach to position this 25 DOF hand locally with respect to the wrist instead of the traditional Moore-Penrose pseudo-inverse and experiment methods. The hypothesis is that human performance measures govern the configuration and motion of the hand. We also propose contact force and joint torque prediction.
Technical Paper

Realistic Posture Prediction for Maximum Dexterity

2001-06-26
2001-01-2110
This paper presents an efficient numerical formulation for the prediction of realistic postures. This problem is defined by the method (or procedure) used to predict the posture of a human, given a point in the reachable space. The exposition addresses (1) the determination whether a point is reachable (i.e., does is it exist within the reach envelope) and (2) the calculation of a posture for a given point. While many researchers have used either statistical models of empirical data or the traditional geometric inverse kinematics method for posture prediction, we present a method based on kinematics for modeling, but one that uses optimization of a cost function to predict a realistic posture. It is shown that this method replicates the human mind in selecting a posture from an infinite number of possible postures.
Technical Paper

Restrained and Unrestrained Driver Reach Barriers

2004-06-15
2004-01-2199
Design and packaging of automotive interiors and airplane cockpits has become a science in itself, particularly in recent years where safety is paramount. There are various methods for restraining operators in their seats, including fitting an operator, such as a race car driver or pilot, with two seat belts, one for each side of the body, a three point restraining system as in commercial vehicles, and a lap belt as in some trucks and other types of vehicles. Moreover, significant experimental efforts have been made to study driver reach and barriers since they directly affect performance and safety. This paper presents a rigorous formulation for addressing the reach envelope and barriers therein of a 3-point restrained driver compared with a lap-belt-restrained driver. The formulation is based on a kinematic model of the driver, which characterizes the upper body and arm as 7 degrees of freedom (DOF) for an unrestrained and 4DOF for a 3-point restrained driver.
Technical Paper

SANTOS™ Hand: A 25 Degree-of-Freedom Model

2005-06-14
2005-01-2727
This paper presents a SANTOS™ 25 degree-of-freedom (DOF) hand model and the forward and inverse kinematic analysis. The Denavit-Hartenberg (D-H) method is used to define the position of the end- effector (fingertip). In the SANTOS™ hand model each finger has different constraints and movements (e.g., the middle finger in distal Interphalangeal (DIP) joint can move in Flexion/Extension (F/E) with a range 0–100 degrees, and the thumb in interphalangeal (IP) joint can rotate in F/E with arrange of 15H/80). Including hand model SANTOS™ has over 100 DOFs and the forward and inverse kinematics have been studied. Optimization-based dynamic motion prediction will be used to consider different gestures for hand grasping.
X