Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Study of Knee Joint Kinematics and Mechanics using a Human FE Model

2005-11-09
2005-22-0006
Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices.
Technical Paper

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-04
2001-06-0241
Lower extremity injuries in frontal automotive crashes usually occur with footwell intrusion where both the knee and foot are constrained. In order to identify factors associated with tibial shaft injury, a series of numerical simulations were conducted using a finite element model of the whole human body. These simulations demonstrated that tibial mid-shaft injuries in frontal crashes could be caused by an abrupt change in velocity and a high rate of footwell intrusion.
Technical Paper

Analysis of Driver and a “Four Wheel Steering Vehicle” System Using a Driving Simulator ISSN0148-7191

1988-02-01
880641
Four wheel steering vehicle (hereafter called “4WS”) is a passenger car having simultaneously steerable front and rear wheels. But driver's desired steering control characteristics for 4WS have not been determined yet. This paper reports the driver's steering control characteristics, described by a transfer function, to various kinds of vehicles including 4WS, which were obtained by test results of a driver-vehicle system using the driving simulator. This paper also reports evaluation results about the dynamic characteristics of the vehicles from a standpoint of the driver's steering control characteristics.
Technical Paper

Analysis of Head and Neck Response During Side Impact

1999-03-01
1999-01-0717
Numerical analyses of head and neck response during side impact are presented in this paper. A mathematical human model for side impact simulation was developed based on previous studies of other researchers. The effects of muscular activities during severe side impact were analyzed with the use of this model. This study shows that the effect of muscular activities is significant especially if the occupant is prepared to resist the impact. This result suggests that the modeling of muscles is important for the simulation of real accident situation.
Technical Paper

Ankle Skeletal Injury Predictions Using Anisotropic Inelastic Constitutive Model of Cortical Bone Taking into Account Damage Evolution

2005-11-09
2005-22-0007
The most severe ankle skeletal injury called pilon fractures can cause long term disability and impairment. Based on previous experimental studies, the pilon fractures are regarded as caused by a high-energy compressive force in the ankle joint and affected by a muscular tension force generated by emergency braking. However, quantitative injury criteria for the pilon fractures are still unknown. More accurate prediction of bone fractures in the distal tibia using a FE model of human lower leg can help us know the quantitative injury criteria. Therefore we newly proposed an anisotropic inelastic constitutive model of cortical bone including damage evolution and then implemented it to a FE code, LS-DYNA. The proposed model successfully reproduced most of anisotropy, strain rate dependency, and asymmetry of tension and compression on material and failure properties of human femoral cortical bone.
Technical Paper

Development of a Finite Element Model of the Human Lower Extremity for Analyses of Automotive Crash Injuries

2000-03-06
2000-01-0621
A finite element model of the human lower extremity has been developed to predict lower extremity injuries in full frontal and offset frontal impact. The model included 30bones from femur to toes. Each bone was modeled using crushable solid elements for the orbicular bone and damageable shell elements for the cortical bone. The models of the long bones for the lower extremities were validated against data obtained from quasi-static 3-pointbending tests by Yamada (1970). The ankle, knee and hip joints were modeled as bone-to-bone contacts and included major ligaments and tendons. The ankle model was validated against data obtained from quasi-staticdorsiflexion, inversion and eversion tests by Petit et al. (1996) and against data obtained from dynamic impactcadaveric tests by Kitagawa et al. (1998). The possibility of using this model to predict injuries was discussed.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female

2005-11-09
2005-22-0012
Several three-dimensional (3D) finite element (FE) models of the human body have been developed to elucidate injury mechanisms due to automotive crashes. However, these models are mainly focused on 50th percentile male. As a first step towards a better understanding of injury biomechanics in the small female, a 3D FE model of a 5th percentile female human chest (FEM-5F) has been developed and validated against experimental data obtained from two sets of frontal impact, one set of lateral impact, two sets of oblique impact and a series of ballistic impacts. Two previous FE models, a small female Total HUman Model for Safety (THUMS-AF05) occupant version 1.0ϐ (Kimpara et al., 2002) and the Wayne State University Human Thoracic Model (WSUHTM, Wang 1995 and Shah et al., 2001) were integrated and modified for this model development.
Technical Paper

Dynamic Characteristics of Motor Vehicles on “Drum Tester” - for a Motion System of a Driving Simulator

1986-10-01
861374
A newly designed driving simulator for analysis of a driver-vehicle system was developed. It is composed of the “drum tester” with a real vehicle and a visual system. The drum tester is a lateral motion simulator for invetigating stability and controllability of vehicles with great accuracy in the laboratory. A driver is able to operate the real vehicle on the drum tester because it allows the vehicle yaw and roll rotation and lateral motion within the limits of drum width. The drum tester is suited for the analysis of lane change and straight running tests because of the limited drum width. It was used for a motion system in the driving simulator. It has been proved that dynamic characteristics of the vehicle on the drum tester are well corresponding to those on the road under the same conditions not only experimentally but also theoretically.
Technical Paper

Investigation of Anteroposterior Head-Neck Responses during Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model

2006-11-06
2006-22-0019
Injuries of the human brain and spinal cord associated with the central nervous system (CNS) are seen in automotive accidents. CNS injuries are generally categorized into severe injuries (AIS 3+). However, it is not clear how the restraint conditions affect the CNS injuries. This paper presents a newly developed three-dimensional (3D) finite element head-neck model in order to investigate the biomechanical responses of the brain-spinal cord complex. The head model consists of the scalp, skull, and a detailed description of the brain including the cerebrum, cerebellum, brainstem with distinct white and gray matter, cerebral spinal fluid (CSF), sagittal sinus, dura, pia, arachnoid, meninx, falx cerebri, and tentorium. Additionally, the neck model consists of the cervical vertebral bodies, intervertebral discs, muscles, ligaments, spinal cord with white and gray matter, cervical pia, and CSF.
Technical Paper

Mechanical Characterization of Porcine Abdominal Organs

2002-11-11
2002-22-0003
Typical automotive related abdominal injuries occur due to contact with the rim of the steering wheel, seatbelt and armrest, however, the rate is less than in other body regions. When solid abdominal organs, such as the liver, kidneys and spleen are involved, the injury severity tends to be higher. Although sled and pendulum impact tests have been conducted using cadavers and animals, the mechanical properties and the tissue level injury tolerance of abdominal solid organs are not well characterized. These data are needed in the development of computer models, the improvement of current anthropometric test devices and the enhancement of our understanding of abdominal injury mechanisms. In this study, a series of experimental tests on solid abdominal organs was conducted using porcine liver, kidney and spleen specimens. Additionally, the injury tolerance of the solid organs was deduced from the experimental data.
Technical Paper

Relationship between Localized Spine Deformation and Cervical Vertebral Motions for Low Speed Rear Impacts Using Human Volunteers

1999-09-23
1999-13-0010
It is important to more clearly identify the relationship among the ramping-up motion, straightening of the whole spine, and cervical vertebrae motion in order to clarify minor neck injury mechanism. The aim of the current study is to verify the influence of the change of the spine configuration on human cervical vertebral motion and on head/neck/torso kinematics under low speed rear-end impacts. Seven healthy human volunteers participated in the experiment under the supervision of an ethics committee. Each subject sat on a seat mounted on a sled that glided backward on rails and simulated actual car impact acceleration. Impact speeds (4, 6, and 8 km/h), and seat stiffness (rigid and soft) without headrest were selected. During the experiment, the change of the spine configuration (measured by a newly developed spine deformation sensor with 33 paired set strain gauges and placed on the skin) and the interface load-pressure distribution was recorded.
X