Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Technical Paper

Effects of Fuel Properties on Diesel Spray Behavior under High Temperature and High Pressure Conditions

2009-04-20
2009-01-0834
In order to clarify the state of spray and mixture formation in a diesel engine cylinder, the formation technique of high temperature and high pressure conditions in a constant-volume chamber was developed. This technique reproduces actual cylinder conditions (for example, 5MPa and 873K at TDC in NA engines with a compression ratio of 16) by filling ambience formation mixture into the chamber and pre-igniting the mixture. LIEF (Laser Induced Exciplex Fluorescence) technique was applied to the analysis of vapor-liquid separation as the measurement of spray. However, the light emission from various aromatic compounds by laser irradiation makes it difficult to apply the technique to the evaluation of the actual fuel. Therefore the preparation technique of the fuel for this LIEF technique was developed to have a mixture formation state on fuel properties.
Technical Paper

Effects of Fuel Properties on Premixed Charge Compression Ignition Combustion in a Direct Injection Diesel Engine

2003-05-19
2003-01-1815
Effects of fuel distillation characteristics and cetane number on premixed charge compression ignition (PCCI) combustion were investigated for the purpose of reducing NOx and PM emissions from a direct injection diesel engine. The test engine had a hole type injection nozzle for conventional diesel combustion at high load operation. A low compression ratio and cooled EGR were applied to the test engine in order to reduce the compression temperature for avoiding pre-ignition. The investigation results show that, in the case of ignition control by EGR, a light fuel with lower distillation characteristics had an advantage of reducing smoke at higher loads. This means that high volatility fuel is effective in promoting lean mixture formation of fuel and air during the ignition delay. Moreover, lowering the cetane number was effective in reducing NOx emissions by suppression of combustion temperature.
Technical Paper

Effects of GTL Fuel Properties on DI Diesel Combustion

2005-10-24
2005-01-3763
Reduction of vehicle exhaust emissions is an important contributor to improved air quality. At the same time demand is growing for new transportation fuels that can enhance security and diversity of energy supply. Gas to Liquids (GTL) Fuel has generated much interest from governments and automotive manufacturers. It is a liquid fuel derived from natural gas, and its properties - sulphur free, low polyaromatics and high cetane number - make it desirable for future clean light-duty diesel engines. In this paper, the effects of distillation characteristics and cetane number of experimental GTL test fuels on direct injection (DI) diesel combustion and exhaust emissions were investigated, together with their spray behaviour and mixing characteristics. The test results show that the lower distillation test fuels produce the largest reductions in smoke and PM emissions even at high cetane numbers. This is linked to the enhanced air/fuel mixing of the lighter fuel in a shorter time.
Journal Article

Effects of Hydrotreated Vegetable Oil (HVO) as Renewable Diesel Fuel on Combustion and Exhaust Emissions in Diesel Engine

2011-08-30
2011-01-1954
The effects of Hydrotreated vegetable oil (HVO) on combustion and emission characteristics in a diesel engine were investigated by using spray analyzer, engine dynamometer and vehicle tests. Spray analysis showed that spray characteristics was virtually the same for HVO and diesel. From the results of the engine dynamometer and the vehicle tests, it was found that the high cetane number and the zero aromatics of HVO could reduce in HC and PM emissions. Moreover, as a result of optimized engine calcification, HVO is capable of improving partial fuel consumption and full-load torque. These results indicate that HVO has beneficial fuel characteristics for diesel engine.
Technical Paper

Effects of Next-Generation Bio Diesel Fuel on the Engine Performance

2015-09-01
2015-01-1928
Hydrotreated Vegetable Oil (HVO) and Sugar-to-Diesel as next-generation bio diesel fuels consist of normal and iso-paraffin, and those carbon number of paraffinic hydrocarbons and distillation characteristics are narrow distribution. These characteristics would cause to deteriorate the evaporation and mixture with air and fuel. Therefore, in this study, the effects of normal paraffin (Tridecane) and iso-paraffin (HVO) on emission characteristics and cold start performance in a diesel engine were investigated by engine dynamometer tests, cold start vehicle tests, and spray analyzer tests. From the results, it was found that normal and iso-paraffin are beneficial for HC, CO, Smoke emission reduction. In addition, isomerization is effective for the diesel engine to fulfill cold start performance, since normal paraffin of narrow carbon number distribution became solidified under low temperature and high pressure condition in a common rail system.
Technical Paper

Effects of RME30 on Exhaust Emissions and Combustion in a Diesel Engine

2008-10-06
2008-01-2499
Considering the popularity of biodiesel fuels for diesel vehicles, the impacts of rapeseed oil methyl ester (RME), which is the most utilized biodiesel fuel in Europe, on tailpipe emissions from a diesel passenger car was investigated. In this study, 30% RME blended diesel fuel (RME30) was used and the comparison of tailpipe emissions between RME30 and a reference diesel fuel was conducted using a test vehicle with the latest engine and aftertreatment system. The results of the investigation reveal that RME30 generates about the same amount of NOx in tailpipe emissions as diesel fuel, and less HC, CO, and PM. These phenomena occurred in spite of attaching catalysts to the test vehicle, and therefore suggesting that the NOx conversion efficiency of the catalysts for RME30 is equal to that for diesel fuel. The injection rate for RME30 was the same as that for diesel fuel.
Technical Paper

Feasibility Study of Exhaust Emissions in a Natural Gas Diesel Dual Fuel (DDF) Engine

2012-09-10
2012-01-1649
The Diesel Dual Fuel (DDF) vehicle is one of the technologies to convert diesel vehicles for natural gas usage. The purpose of this research was to study the possibility of a DDF vehicle to meet emission standards for diesel vehicles. This research was done for small passenger vehicles and commercial vehicles. The exhaust emissions compliance of such vehicles in a New European Driving Cycle (NEDC) mode which was composed of Urban Driving Cycles (UDC) and an Extra Urban Driving Cycle (EUDC) was evaluated. (see APPENDIXFigure A1) In this study, the passenger vehicle engine, compliant with the EURO4 standard, was converted to a DDF engine. Engine bench tests under steady state conditions showed similar result to previous papers. Total hydrocarbon (HC) emission was extremely high, compared to diesel engine. The NEDC mode emissions of the DDF vehicle were estimated based on these engine bench test results.
Technical Paper

GTL Fuel Impact on DI Diesel Emissions

2007-07-23
2007-01-2004
Reduction of exhaust emissions was investigated in a modern diesel engine equipped with advanced diesel after treatment system using a Gas-to-Liquid (GTL) fuel, a cleaner burning alternative diesel fuel. This fuel has near zero sulfur and aromatics and high cetane number. Some specially prepared GTL fuel samples were used to study the effects of GTL fuel distillation characteristics on exhaust emissions before engine modification. Test results indicated that distillation range of GTL fuels has a significant impact on engine out PM. High cetane number also improved HC and CO emissions, while these fuel properties have little effect on NOx emissions. From these results, it was found that low distillation range and high cetane number GTL fuel can provide a favorable potential in NOx/PM emissions trade-off. In order to improve the tail-pipe emissions in the latest diesel engine system, the engine modifications were carried out for the most favorable GTL fuel sample.
Technical Paper

Improvement of DI Diesel Engine System by Utilizing GTL Fuels Characteristics

2009-06-15
2009-01-1933
Gas To Liquid (GTL) fuels synthesized from natural gas are known as clean fuels. Therefore, GTL fuels have been expected to be a promising option that can reduce the NOx and PM emissions from diesel engines and contribute to the energy security. In this study, in order to clarify the emission reduction potentials, the improvement of DI diesel engine and aftertreatment systems were investigated by utilizing GTL fuels characteristics. To achieve a further reduction of both NOx and PM emissions, the combustion chamber, injection pattern and EGR calibration were modified. From the results of tests, the engine out NOx emissions were reduced to the Euro 6 regulation level and in parallel the expected deteriorations of HC emission and fuel consumption were suppressed because of the characteristics of high cetane number and zero poly-aromatics hydrocarbons. Additionally, an aftertreatment system was optimized to GTL fuel in order to improve NOx conversion efficiency.
Technical Paper

Research of the DI Diesel Spray Characteristics at High Temperature and High Pressure Ambient

2007-04-16
2007-01-0665
In order to clarify the diesel fuel spray characteristics inside the cylinder, we developed two novel techniques, which are preparation of same level of temperature and pressure ambient as inside cylinder and quantitative measurement of vapor concentration. The first one utilizes combustion-type constant-volume chamber (inner volume 110cc), which allows 5 MPa and 873K by igniting the pre-mixture (n-pentane and air) with two spark plugs. In the second technique, TMPD vapor concentration is measured by using Laser Induced Exciplex Fluorescence method (LIEF). The concentration is compensated by investigation of the influence of ambient pressure (from 3 to 5 MPa) and temperature (from 550 to 900 K) on TMPD fluorescence intensity. By using two techniques, we investigated the influence of nozzle hole diameter, injection pressure and ambient condition on spray characteristics.
X