Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Zero Dimensional Turbulence and Heat Transfer Phenomenological Model for Pre-Chamber Gas Engines

2018-04-03
2018-01-1453
Most of the phenomena that occur during the high pressure cycle of a spark ignition engine are highly influenced by the gas temperature, turbulence intensity and turbulence length scale inside the cylinder. For a pre chamber gas engine, the small volume and the high surface-to-volume ratio of the pre chamber increases the relative significance of the gas-to-wall heat losses, the early flame kernel development and the wall induced quenching; all of these phenomena are associated up to a certain extent with the turbulence and temperature field inside the pre chamber. While three-dimensional (3D) computational fluid dynamics (CFD) simulations can capture complex phenomena inside the pre chamber with high accuracy, they have high computational cost. Quasi dimensional models, on the contrary, provide a computationally inexpensive alternative for simulating multiple operating conditions as well as different geometries.
Technical Paper

Characterization and Phenomenological Modeling of Mixture Formation and Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-1138
A phenomenological model for heat release rate predictions taking into account the characteristic processes inside a direct injection gasoline engine is presented. Fuel evaporation and preparation as well as the specifics of premixed and mixing controlled combustion phase are regarded. Only a few model constants need to be set which have been fit empirically for the application in a one-cylinder research engine. This jet guided direct injection gasoline engine employs a modern common-rail injection system and runs predominantly in stratified mode. The model allows the prediction of the influence of numerous parameter variations, e.g. injection-ignition phasing, load, engine speed, swirl, etc. on the combustion process. Furthermore efficient simulations can be carried out without using expensive three-dimensional CFD (computational fluid dynamics) calculations.
Technical Paper

Characterization of the Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-0834
The physical behavior of the combustion process in a jet-guided direct injection spark ignition engine has been investigated with three different measurement techniques. These are flame visualization by use of endoscopy, ion-current sensing at 16 different locations in the combustion chamber and the estimation of the flame temperature as well as soot concentration based on multi-wavelength-pyrometry. The results of all these measurement techniques are in good agreement between each other and give a coherent picture of the physical behavior of the combustion process and make it possible to characterize the main influence parameters on combustion. This serves as a basis for validation and improvement of simulation tools for the engine thermodynamics and combustion.
Journal Article

Formulation of a Knock Model for Ethanol and Iso-Octane under Specific Consideration of the Thermal Boundary Layer within the End-Gas

2014-10-13
2014-01-2607
Knock is often the main limiting factor for brake efficiency in spark ignition engines and is mostly attributed to auto-ignition of the unburned mixture in front of the flame. In order to study knock in a systematic way, spark angle sweeps with ethanol and iso-octane have been carried out on single cylinder spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed fuel/air mixtures. Much earlier and stronger knock can be observed for iso-octane compared to ethanol at otherwise same engine operating conditions due to the cooling effect and higher octane number of ethanol, leading to different cycle-to-cycle variation behavior. Detailed chemical kinetic mechanisms are used to compute ignition delay times at conditions relevant to the measurements and are compared to empirical correlations available in literature. The different correlations are used in a knock model approach and are tested against the measurement data.
Technical Paper

Influence of Fuel Composition and Combustion Process on Thermodynamic Parameters of SI Engines

2012-09-10
2012-01-1633
In the field of heavy-duty applications almost all engines apply the compression ignition principle, spark ignition is used only in the niche of CNG engines. The main reason for this is the high efficiency advantage of diesel engines over SI engines. Beside this drawback SI engines have some favorable properties like lower weight, simple exhaust gas aftertreatment in case of stoichiometric operation, high robustness, simple packaging and lower costs. The main objective of this fundamental research was to evaluate the limits of a SI engine for heavy-duty applications. Considering heavy-duty SI engines fuel consumption under full load conditions has a high impact on CO₂ emissions. Therefore, downsizing is not a promising approach to improve fuel consumption and consequently the focus of this work lies on the enhancement of thermal efficiency in the complete engine map, intensively considering knocking issues.
Journal Article

Knock in an Ethanol Fueled Spark Ignition Engine: Detection Methods with Cycle-Statistical Analysis and Predictions Using Different Auto-Ignition Models

2014-04-01
2014-01-1215
Knock is studied in a single cylinder direct injection spark ignition engine with variable intake temperatures at wide open throttle and stoichiometric premixed ethanol-air mixtures. At different speeds and intake temperatures spark angle sweeps have been performed at non-knocking conditions and varying knock intensities. Heat release rates and two zone temperatures are computed for both the mean and single cycle data. The in-cylinder pressure traces are analyzed during knocking combustion and have led to a definition of knocking conditions both for every single cycle as well as the mean engine cycle of a single operating point. The timing for the onset of knock as a function of degree crank angle and the mass fraction burned is determined using the “knocking” heat release and the pressure oscillations typical for knocking combustion.
Journal Article

LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine

2014-04-01
2014-01-1138
Large eddy simulations (LES) of a port-injected 4-valve spark ignited (SI) engine have been carried out with the emphasis on the combustion process. The considered operating point is close to full load at 3,500 RPM and exhibits considerable cyclic variation in terms of the in-cylinder pressure traces, which can be related to fluctuations in the combustion process. In order to characterize these fluctuations, a statistically relevant number of subsequent cycles, namely up to 40, have been computed in the multi-cycle analysis. In contrast to other LES studies of SI engines, here the G-equation (a level set approach) has been adopted to model the premixed combustion in the framework of the STAR-CD/es-ICE flow field solver. Tuning parameters are identified and their impact on the result is addressed.
Technical Paper

Near-Wall Unsteady Premixed Flame Propagation in S.I. Engines

1995-02-01
951001
A computational study of the near-wall premixed flame propagation in homogeneous charge spark ignited engines is presented on the basis of a spectral concept accounting for flow-chemistry interaction in the flamelet regime. Flame surface enhancement due to wrinkling and modification of the local laminar flame speed due to flame stretch are the main phenomena described by the model. A high pass filter in the turbulent kinetic energy spectrum associated with the distance between the ensemble-averaged flame front location and the solid surface has been also introduced. In addition a probability density function of instantaneous flamelet positions around the above mean flame front location allows to consider statistical effects in a simplified way. Issues of temperature distribution within the boundary layer and associated heat losses, except for the concept of a thermal quenching distance, are thereby not explicitly taken into account.
X