Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Journal Article

Chemical Analysis Results for Potable Water Returned from ISS Expeditions 14 and 15

2008-06-29
2008-01-2197
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 14 and 15. During the 12-month duration of both expeditions, the Space Shuttle docked with the ISS on four occasions to continue construction and deliver additional crew and supplies; however, no Shuttle potable water was transferred to the station during Expedition 14. Russian ground-supplied potable water and potable water from regeneration of humidity condensate were both available onboard the ISS for consumption by the Expeditions 14 and 15 crews. A total of 16 chemical archival water samples were collected with U.S. hardware during Expeditions 14 and 15 and returned on Shuttle flights STS-116 (12A.1), STS-117 (13A), STS-118 (13A.1), and STS-120 (10A) in December 2006, and June, August, and November of 2007, respectively.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

Chemical Analysis of ISS Potable Water From Expeditions 8 and 9

2005-07-11
2005-01-2885
With the Shuttle fleet grounded, limited capability exists to resupply in-flight water quality monitoring hardware onboard the International Space Station (ISS). As such, verification of the chemical quality of the potable water supplies on ISS has depended entirely upon the collection, return, and ground-analysis of archival water samples. Despite the loss of Shuttle-transferred water as a water source, the two-man crews during Expedition 8 and Expedition 9 maintained station operations for nearly a year relying solely on the two remaining sources of potable water; reclaimed humidity condensate and Russian-launched ground water. Archival potable water samples were only collected every 3 to 4 months from the systems that regenerate water from condensate (SRV-K) and distribute stored potable water (SVO-ZV).
Technical Paper

Colorimetric-Solid Phase Extraction (C-SPE): In-Flight Methodologies for the Facile Determination of Trace Level Indicators of Water Quality

2008-06-29
2008-01-2201
At present, spacecraft water quality is assessed when samples collected on the International Space Station (ISS) are returned to Earth. Several months, however, may pass between sample collection and analysis, potentially compromising sample integrity by risking degradation. For example, iodine and silver, which are the respective biocides used in the U.S. and Russian spacecraft potable water systems, must be held at levels that prevent bacterial growth, while avoiding adverse effects on crew health. A comparable need exists for the detection of many heavy metals, toxic organic compounds, and microorganisms. Lead, cadmium, and nickel have been found, for instance, in the ISS potable water system at amounts that surpass existent requirements. There have been similar occurrences with hazardous organic compounds like formaldehyde and ethylene glycol. Microorganism counts above acceptable limits have also been reported in a few instances.
Technical Paper

Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

2007-07-09
2007-01-3217
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Humidity Condensate Sampling System for Shuttle, Mir and International Space Station

1998-07-13
981764
Archival sampling of potable water and condensate for ground laboratory analysis has been an important part of the Shuttle-Mir program because of coolant leaks and other events on Mir that have affected water quality. We report here the development of and preliminary results from a novel device for single phase humidity condensate collection at system pressures. The sampler consists of a commercial-off-the-shelf Teflon® bladder and a custom reinforced Nomex® restraint that is sized properly to absorb the stress of applied pressures. A plastic Luer-Lock disconnect, with poppet actuated by a mating Luer-Lock fitting, prevents the contents from being spilled during transport. In principle, a sampler of any volume can be designed. The empty mass of the reusable one-liter sampler is only 63 grams. Several designs were pressure tested and found to withstand more than 3 atmospheres well in excess of typical spacecraft water or wastewater system pressures.
Technical Paper

ISS Expeditions 10 & 11 Potable Water Sampling and Chemical Analysis Results

2006-07-17
2006-01-2015
During the twelve month period comprising Expeditions 10 and 11, the chemical quality of the potable water onboard the International Space Station (ISS) was verified through the return and ground analysis of water samples. The two-man Expedition 10 crew relied solely on Russian-provided ground water and reclaimed cabin humidity condensate as their sources of potable water. Collection of archival water samples with U.S. hardware has remained extremely restricted since the Columbia tragedy because of very limited return volume on Russian Soyuz vehicles. As a result only two such samples were collected during Expedition 10 and returned on Soyuz 9. The average return sample volume was only 250 milliliters, which limited the breadth of chemical analysis that could be performed. Despite the Space Shuttle vehicle returning to flight in July 2005, only two potable water samples were collected with U.S. hardware during Expedition 11 and returned on Shuttle flight STS-114 (LF1).
Technical Paper

ISS Potable Water Sampling and Chemical Analysis: Expeditions 6 & 7

2004-07-19
2004-01-2537
Ever since the first crew arrived at the International Space Station (ISS), archival potable water samples have been collected and returned to the ground for detailed chemical analysis in order to verify that the water supplies onboard are suitable for crew consumption. The Columbia tragedy, unfortunately, has had a dramatic impact on continued ISS operations. A major portion of the ISS water supply had previously consisted of Shuttle-transferred water. The other two remaining sources of potable water, i.e., reclaimed humidity condensate and Russian-launched ground water, are together insufficient to maintain 3-person crews. The Expedition 7 crew launched in April of 2003 was, therefore, reduced from three to two persons. Without the Shuttle, resupply of ISS crews and supplies is dependent entirely on Russian launch vehicles (Soyuz and Progress) with severely limited up and down mass.
Technical Paper

ISS Total Organic Carbon Analyzer - 2002 Status

2002-07-15
2002-01-2533
Potable water supplies onboard the International Space Station (ISS) include both reclaimed water from treatment of atmospheric humidity condensate and stored water that is either Shuttle-transferred or ground-supplied. Space station medical operations requirements call for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected from unsafe drinking water. A Total Organic Carbon Analyzer (TOCA) designed to meet these requirements was developed as part of the Crew Health Care System and launched to the ISS in April of 2001. The initial design of the ISS TOCA was previously presented at this conference in 1998. The current design of the instrument includes an improved reagent system and upgraded software to enhance accuracy through the capability to measure organic contamination of the reagents and correct analytical results.
Technical Paper

ISS Total Organic Carbon Analyzer Status Update - 2003

2003-07-07
2003-01-2403
The Crew Health Care System (CHeCS) is responsible for providing environmental monitoring to protect crew health, including in-flight chemical water quality analysis. To meet this objective, Total Organic Carbon Analyzer (TOCA) Serial Number (SN) 1002 was launched to the International Space Station (ISS) in April of 2001 as part of the CHeCS hardware. Since that time it has been used to evaluate the quality of the potable water supplies consisting of reprocessed atmospheric condensate water, Shuttle-transferred water, and ground-supplied water. Potable water is available for crew use from the Service Module System for Regeneration of Water from Condensate (SRV-K) galley hot and warm ports and the Stored Potable Water System (SVO-ZV) port. Potable water samples are periodically collected from each of these ports for in-flight analysis with the TOCA.
Journal Article

Microgravity Evaluation of Colorimetric-Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

2008-06-29
2008-01-2199
We are developing a drinking water test kit based on colorimetric-solid phase extraction (C-SPE) for use onboard the International Space Station (ISS) and on future Lunar and/or Mars missions. C-SPE involves measuring the change in diffuse reflectance of indicator disks following their exposure to a water sample. We previously demonstrated the effectiveness of C-SPE in measuring iodine in microgravity. This analytical method has now been extended to encompass the measurement of total I (i.e., iodine, iodide, and triiodide). This objective was accomplished by introducing an oxidizing agent to convert iodide and triiodide to iodine, which is then measured using the indicator disks previously developed for iodine. We report here the results of a recent series of C-9 microgravity tests of this method. The results demonstrate that C-SPE technology is poised to meet the total I monitoring requirements of the international space program.
Technical Paper

Risk Mitigation Water Quality Monitor

1997-07-01
972463
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon, total inorganic carbon, total carbon, pH, and conductivity, to ensure that crew health is protected for consumption of reclaimed water. The Crew Health Care System for ISS includes a total organic carbon (TOC) analyzer that is currently being designed to meet this requirement. As part of the effort, a spacecraft TOC analyzer was developed to demonstrate the technology in microgravity and mitigate risks associated with its use on station. This analyzer was successfully tested on Shuttle during the STS-81 mission as a risk mitigation experiment. A total of six ground-prepared test samples and two Mir potable water samples were analyzed in flight during the 10-day mission.
Technical Paper

Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13

2007-07-09
2007-01-3214
The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12-months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11.
Journal Article

Solid Phase Extraction Mechanistic Studies of the Ag(I)-DMABR Complex: Improving Efficiency of the C-SPE Standard Method of Analysis

2008-06-29
2008-01-2200
Aqueous silver(I) is added at trace levels (0.1 – 1.0 mg/L) to spacecraft potable water as a biocide. Development of a method that can be deployed on orbit and in future Lunar and Mars missions is therefore central to maintenance of safe drinking water and crew health. To address this need, our laboratory has created an analytical technique that couples a selective sorption process based on solid phase extraction (SPE) with the quantitative measurement of the extract by a hand-held diffuse reflection spectrophotometer. This technique, referred to as colorimetric-solid phase extraction (C-SPE), enables the low level detection (limit of detection ∼5 ppb) of silver(I) by metering 1.0 mL of a water sample through a reagent-impregnated (i.e., 5-(p-dimethyl-aminobenzylidene)rhodanine, DMABR) SPE membrane. The total workup time for the analysis is only 60-90 s.
Technical Paper

Total Organic Carbon Analyzer For ISS

1998-07-13
981765
On the International Space Station (ISS), atmospheric humidity condensate and other waste waters will be recycled and treated to produce potable water for use by the crews. Space Station requirements include an on-orbit capability for real-time monitoring of key water quality parameters, such as total organic carbon (TOC), total inorganic carbon (TIC), total carbon (TC), pH, and conductivity, to ensure that crew health is protected during consumption of reclaimed water. The Crew Health Care System (CHeCS) for ISS includes an analyzer that has been designed to meet this requirement. The analyzer is adapted from commercially successful technology, and it measures TOC and TIC throughout the range from 1 to 50,000 μg/L, and TC from 1 to 100,000 μg/L. It measures pH between 2.0 and 12.0 pH units, and conductivity from 0.1 to 300 μmho/cm. The analyzer is scheduled for launch to ISS on mission 2A.1.
Technical Paper

Water Quality Program Elements for Space Station Freedom

1991-07-01
911400
Space Station Freedom (SSF) will be operational for up to 30 years with missions lasting up to 180 days. Because of the need for large amounts of potable and hygiene water for the crews, it will not be practical to supply water from the ground (as was done for Skylab) or to generate water from fuel cells (as is done for the Shuttle). Hence, waste and metabolic waters will be reclaimed and recycled in SSF. Because of the unique nature of the water sources and the closed loop recycling processes, providing safe water will be a challenging task. Developing a program for the verification of SSF water quality to ensure crew health is the responsibility of NASA's Medical Sciences Division at the Johnson Space Center (JSC). This program is being implemented through the Environmental Health System (EHS). This paper will describe the strategy for the development of water quality criteria and standards, and the associated monitoring requirements.
X