Refine Your Search

Topic

Author

Search Results

Technical Paper

A Systems Approach to Water Recovery Testing for Space Life Support: Initial Biomedical Results from the ECLSS Water Recovery Test and Plans for Testbed Utilization

1992-07-01
921210
Among the challenges of designing and constructing Space Station Freedom is the development of the water system. A review of past efforts in reclaiming waste water in enclosed environments reveals that there are many gaps in the biomedical understanding of this process. Some of the key uncertainties of human interaction with a closed water system include determining potential contaminants and establishing safe levels of multiple compounds in the enclosed system of Space Station. Another uncertainty is the microbial constituency of such a system and what impact it could have on crew health and performance. The use of iodine as the passive biocide may have both an indirect and direct impact on the crew. In this paper the initial results of the Water Recovery Test are reviewed from a biomedical perspective, revealing areas where more information is needed to develop the ECLSS water system.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

A Volatile Organics Concentrator for Use in Monitoring Space Station Water Quality

1990-07-01
901352
The process used to identify, select and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is described. The Volatile Organics Concentrator (VOC) system described in this paper has been designed for attachment to a gas chromatograph/mass spectrometer (GC/MS) for analysis of volatile organics in water on Space Station. In this work, in order to rank the many identified approaches, the system was broken into three critical areas. These were gases, volatile separation from water and water removal/GC/MS interface. Five options involving different gases (or combinations) for potential use in the VOC and GC/MS system were identified and ranked. Nine options for separation of volatiles from the water phase were identified and ranked. Seven options for use in the water removal/GC column and MS interface were also identified and included in overall considerations.
Technical Paper

Advanced Development of the Regenerative Microbial Check Valve

1993-07-01
932175
The Microbial Check Valve (MCV) is a reloadable flow-through canister containing iodinated ion exchange resin, which is used aboard the Shuttle Orbiter as a disinfectant to maintain water potability. The MCV exhibits a significant contact kill and imparts a biocidal residual I2 concentration to the effluent. MCVs in current use have nominal 30 day lives. MCVs baselined for Space Station Freedom will have 90 day lives, and will require replacement 120 times over 30 years. Means to extend MCV life are desirable to minimize resupply penalties. New technology has been developed for fully autonomous in situ regeneration of an expended MCV canister. The Regenerative Microbial Check Valve (RMCV) consists of an MCV, a packed bed of crystalline I2, a flow diverter valve, an in-line iodine monitor and a microcontroller. During regeneration, flow is directed first through the packed I2 bed and then into the MCV where the resin is replenished.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Two-Year Results

1991-07-01
911403
The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation.
Technical Paper

Capillary Electrophoresis for Spacecraft Drinking Water Analysis: Methods and Breadboard Development

1997-07-01
972464
This report describes the first two parts of a three-phase project to develop and test a spacecraft-compatible capillary electrophoresis (CE) instrument. This instrument is designed to monitor the quality of recycled potable water aboard spacecraft such as the International Space Station. Phase I involved selecting and validating methods for low mass-to-charge ratio (m/z) cations and anions by using a slightly modified commercial CE instrument as a model. The analytical performance of several published CE methods was assessed for their ability to detect targeted anions and cations listed in a NASA water quality standard. Direct and indirect UV absorption detection at a single wavelength (214 nm) was used, and separation selectivity and sensitivity were optimized at the expense of analysis time. Phase II focused on building a breadboard CE instrument and flight-testing it on NASA's KC-135 parabolic aircraft.
Technical Paper

Characterization of Spacecraft Humidity Condensate

1993-07-01
932176
When construction of Space Station Freedom reaches the Permanent Manned Capability stage, plans call for the Water Recovery and Management Subsystem to treat distilled urine, spent hygiene water, and humidity condensate in order to reclaim water of potable quality. The reclamation technologies currently baselined to process these wastewaters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that baselined technologies will be able to effectively remove those compounds that present health risks to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in wastewaters representative of those to be encountered on Space Station. This paper reports the efforts by the Water and Food Analytical Laboratory at the Johnson Space Center to enlarge the database of potential contaminants in humidity condensate.
Journal Article

Chemical Analysis Results for Potable Water Returned from ISS Expeditions 14 and 15

2008-06-29
2008-01-2197
The Johnson Space Center Water and Food Analytical Laboratory (WAFAL) performed detailed ground-based analyses of archival water samples for verification of the chemical quality of the International Space Station (ISS) potable water supplies for Expeditions 14 and 15. During the 12-month duration of both expeditions, the Space Shuttle docked with the ISS on four occasions to continue construction and deliver additional crew and supplies; however, no Shuttle potable water was transferred to the station during Expedition 14. Russian ground-supplied potable water and potable water from regeneration of humidity condensate were both available onboard the ISS for consumption by the Expeditions 14 and 15 crews. A total of 16 chemical archival water samples were collected with U.S. hardware during Expeditions 14 and 15 and returned on Shuttle flights STS-116 (12A.1), STS-117 (13A), STS-118 (13A.1), and STS-120 (10A) in December 2006, and June, August, and November of 2007, respectively.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

Chemical Analysis of ISS Potable Water From Expeditions 8 and 9

2005-07-11
2005-01-2885
With the Shuttle fleet grounded, limited capability exists to resupply in-flight water quality monitoring hardware onboard the International Space Station (ISS). As such, verification of the chemical quality of the potable water supplies on ISS has depended entirely upon the collection, return, and ground-analysis of archival water samples. Despite the loss of Shuttle-transferred water as a water source, the two-man crews during Expedition 8 and Expedition 9 maintained station operations for nearly a year relying solely on the two remaining sources of potable water; reclaimed humidity condensate and Russian-launched ground water. Archival potable water samples were only collected every 3 to 4 months from the systems that regenerate water from condensate (SRV-K) and distribute stored potable water (SVO-ZV).
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate Collected During the MIR-21 Mission

1997-07-01
972462
The primary source of potable water planned for the International Space Station will be generated from the reclamation of humidity condensate, urine, and hygiene waters. It is vital to crew health and performance that this reclaimed water be safe for human consumption, and that health risks associated with recycled water consumption be identified and quantified. Only recently has data been available on the chemical constituents in reclaimed waters generated in microgravity. Results for samples collected during Mir-21 reveal that both the reclaimed water and stored water are of potable quality, although the samples did not meet U.S. standards for total organic carbon (TOC), total phenols, and turbidity.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate: Phase One Final Results and Lessons Learned

1999-07-12
1999-01-2028
Twenty-nine recycled water, eight stored (ground-supplied) water, and twenty-eight humidity condensate samples were collected on board the Mir Space Station during the Phase One Program (1995-1998). These samples were analyzed to determine potability of the recycled and ground-supplied water, to support the development of water quality monitoring procedures and standards, and to assist in the development of water reclamation hardware. This paper describes and summarizes the results of these analyses and lists the lessons learned from this project. Results show that the recycled water and stored water on board Mir, in general, met NASA, Russian Space Agency (RSA), and U.S. Environmental Protection Agency (EPA) standards.
Technical Paper

Collection and Chemical Analysis of Reclaimed Water and Condensate from the Mir Space Station

1996-07-01
961569
Potable- and hygiene-quality water will be supplied to crews on the International Space Station through the recovery and purification of spacecraft wastewaters, including humidity condensate, urine, and wash water. Contaminants released into the cabin air from human metabolism, hardware offgassing, flight experiments, and routine operations will be present in spacecraft humidity condensate; normal constituents of urine and bathing water will be present in urine and untreated wash water. This report describes results from detailed analyses of Mir reclaimed potable water, ground-supplied water, and humidity condensate. These results are being used to develop and test water recycling and monitoring systems for the International Space Station (ISS); to evaluate the efficiency of the Mir water processors; and to determine the potability of the recycled water on board.
Technical Paper

Colorimetric-Solid Phase Extraction (C-SPE): In-Flight Methodologies for the Facile Determination of Trace Level Indicators of Water Quality

2008-06-29
2008-01-2201
At present, spacecraft water quality is assessed when samples collected on the International Space Station (ISS) are returned to Earth. Several months, however, may pass between sample collection and analysis, potentially compromising sample integrity by risking degradation. For example, iodine and silver, which are the respective biocides used in the U.S. and Russian spacecraft potable water systems, must be held at levels that prevent bacterial growth, while avoiding adverse effects on crew health. A comparable need exists for the detection of many heavy metals, toxic organic compounds, and microorganisms. Lead, cadmium, and nickel have been found, for instance, in the ISS potable water system at amounts that surpass existent requirements. There have been similar occurrences with hazardous organic compounds like formaldehyde and ethylene glycol. Microorganism counts above acceptable limits have also been reported in a few instances.
Technical Paper

Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

2007-07-09
2007-01-3217
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples.
Technical Paper

Depletion of Biocidal Iodine in a Stainless Steel Water System

1994-06-01
941391
Iodine depletion in a simulated water storage tank and distribution system was examined to support a larger research program aimed at developing disinfection methods for spacecraft potable water systems. The main objective of this study was to determine the rate of iodine depletion with respect to the surface area of the stainless steel components contacting iodinated water. Two model configurations were tested. The first, representing a storage and distribution system, consisted of a stainless steel bellows tank, a coil of stainless steel tubing and valves to isolate the components. The second represented segments of a water distribution system and consisted of eight individual lengths of 21-6-9 stainless tubing similar to that used in the Shuttle Orbiter. The tubing has a relatively high and constant surface area to volume ratio (S/V) and the bellows tank a lower and variable S/V.
Technical Paper

Development Program for a Zero-G Whole Body Shower

1987-09-01
871522
In 1985, the Man-Systems Division at the Johnson Space Center initiated a program for the development of a whole body shower suitable for operation in a microgravity environment. Supporting this development effort has been a systematic research program focused on four critical aspects of the design (i.e., human factors engineering, biomedical, mechanical, and electrical) and on the interfaces between the whole body shower system and the other systems to be aboard the Space Station (e.g., the water reclamation and air revitalization systems). A series of tests has been conducted to help define the design requirements for the whole body shower. Crew interface research has identified major design parameters related to enclosure configurations, consumable quantities, operation timelines, displays and controls, and shower and cleanup protocols.
Technical Paper

Development and (Evidence for) Destruction of Biofilm with Pseudomonas aeruginosa as Architect

1991-07-01
911404
Disinfection and maintenance of an acceptable level of asepsis in spacecraft potable water delivery systems is a formidable task. The major area of research for this project has been to monitor the formation and growth of biofilm, and biofilm attached microorganisms, on stainless steel surfaces (specifically coupons), and the use of ozone for the elimination of these species in a closed loop system. A number of different techniques have been utilized during the course of a typical run. Scraping and sonication of coupon surfaces with subsequent plating as well as epifluorescence microscopy have been utilized to enumerate biofilm protected Pseudomonas aeruginosa. In addition, scanning electron microscopy is the method of choice to examine the integrity of the biofilm. For ozone determinations, the indigo decolorization spectrophotometric method seems most reliable. Both high- and low-nutrient cultured P. aeruginosa organisms were the target species for the ozone disinfection experiments.
Technical Paper

Development and Testing of the Microwave Sterilizable Access Port Prototype

1996-07-01
961567
The ability to aseptically remove samples and products, and the capability for addition of materials to sterile or otherwise microbially susceptible systems have always been compromised by the lack of a reliable means of sterilizing the mating fixtures. Cultures of mammalian cells are particularly vulnerable to microbial contamination due to the complexity of nutrient media and the lengthy periods required for cell growth. The Microwave Sterilizable Access Port has been developed to overcome this limitation. The system consists of three primary components: a microwave power source, a combined sterilization chamber/in-line valve port assembly, and a specimen transfer interface. Microwave energy is transmitted via coaxial cable to a small pressurized chamber that serves as a sterile transition between the surrounding environment and the system during transfer of materials.
X