Refine Your Search

Topic

Search Results

Technical Paper

A Study on Safety Intelligent Driving System for Heavy Truck Downhill in Mountainous Area

2018-10-05
2018-01-1887
Mountainous area makes up more than half of the whole land area of China, the road of which is full of ups and downs. Heavy commercial vehicles as the main means of transport in mountainous areas, braking torque recession, even brake failure, often happens because of the overheating in long downhill journey, which seriously threatens the safety of the driving. Therefore, this paper presents an intelligent assistance system based on Geographic Information System and vehicle dynamics. The main brake duration and heat generation can be effectively reduced through adjusting the speed at the slope top, applying the engine auxiliary brake in the initial stage and choosing braking strategy appropriately, in order to prolong the downhill driving distance and improve the safety during continuous braking. This paper characterizes and analyses the road gradients and their effects on braking heat generation.
Technical Paper

Brake Guidance System for Commercial Vehicles with Coordinated Friction and Engine Brakes

2017-09-17
2017-01-2508
Using friction brakes for long time can increase easily its temperature and lower vehicle brake performance in the downhill process. The drivers' hysteretic perception to future driving condition could mislead them to stop untimely the engine brake, and some other auxiliary braking devices are designed to increase the brake power for reduction of the friction brake torque. The decompression engine brake has complex structure and high cost, and the application of eddy current retarder or hydraulic retarder on the commercial vehicles is mainly limited to their cost and mass. In this paper, an innovative brake guidance system for commercial vehicles with coordinated friction brakes and engine brake is introduced to guide the drivers to minimize the use of the friction brakes on the downhill with consideration of future driving conditions, which is aimed at releasing the engine brake potential fully and controlling the friction brake temperature in safe range.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Design and Simulation Analysis for an Integrated Energy-Recuperation Retarder

2016-04-05
2016-01-0458
Vehicle auxiliary braking system is very significant to the brake safety. The eddy current retarder (ECR) has a good braking performance, but the braking torque would fade under high speed domain. In the contrary, the regenerative brake (RGB) could provide a satisfied braking performance in high speed domain. However, the braking torque in low speed domain is insufficient. This paper proposed a novel concept of the integrated energy-recuperation retarder (IEER), which would take advantage of the merits of both the ECR and the RGB to have a steady braking performance in all-speed domain. The IEER integrates the structures of rotary eddy current retarder (RECR) and the RGB, both of which share a stator. Braking torque of the IEER produced by stator core and armature-windings can stack together, and therefore the IEER can provide greater braking torque than the RECR. Besides, the IEER can recover electric energy from armature-windings.
Technical Paper

Driving Fatigue Detection based on Blink Frequency and Eyes Movement

2017-03-28
2017-01-1443
The development of the vehicle quantity and the transportation system accompanies the rise of traffic accidents. Statistics shows that nearly 35-45% traffic accidents are due to drivers’ fatigue. If the driver’s fatigue status could be judged in advance and reminded accurately, the driving safety could be further improved. In this research, the blink frequency and eyes movement information are monitored and the statistical method was used to assess the status of the driving fatigue. The main tasks include locating the edge of the human eyes, obtaining the distance between the upper and lower eyelids for calculating the frequency of the driver's blink. The velocity and position of eyes movement are calculated by detecting the pupils’ movement. The normal eyes movement model is established and the corresponding database is updated constantly by monitoring the driver blink frequency and eyes movement during a certain period of time.
Technical Paper

Economical speed planning for commercial vehicle slope driving

2020-04-14
2020-01-1285
Improper acceleration, deceleration and shift operation of vehicles on slopes will increase fuel consumption. In the long downhill road sections will even appear brake heat recession, increasing the risk of driving. Currently, the way to improve fuel economy is to improve engine performance and control shift timing, the way to prevent the thermal recession of the main brake in long downhill is to use retarder. The research object of this paper is the transport commercial vehicles. This paper presents a method to reduce vehicle fuel consumption and prevent brake thermal recession through reasonable speed planning. Accurate road slope information of vehicle direction is obtained by GPS/GIS system for speed planning calculation. In this paper, a vehicle transient fuel consumption model, a vehicle longitudinal dynamic model and a temperature rise model of the main brake are established.
Technical Paper

Effect of Circumferential Magnetic Field on Braking Performance of a Direct Vane Magnetorheological Fluid Retarder

2019-04-02
2019-01-0342
The hydraulic retarder used in commercial vehicles can provide hydraulic damping to generate braking torque, reducing the pressure of the braking system on the slope section and increasing the safety. In this paper, the magnetorheological fluid with fast magnetic field reflection characteristics is used to increase the response speed of the hydraulic retarder, which can effectively reduce the response time of the hydraulic retarder. In this paper, the influence of the change of circumferential magnetic field on the braking torque of the magnetorheological fluid retarder is studied.
Technical Paper

Effect of Temperature on Braking Efficiency Stability of Magnetorheological Fluid Auxiliary Braking Devices

2017-09-17
2017-01-2510
Fluid auxiliary braking devices can provide braking torque through hydraulic damping, fluid auxiliary braking devices can also convert vehicular inertia energy into transmission fluid heat energy during the braking, which can effectively alleviate the work pressure of the main brake. Traditional hydraulic auxiliary braking devices use transmission fluids to transmit torque, however, there is a certain lag effect during the braking. The magnetorheological fluid (MR fluid) can also be used to transmit torque because it has the advantages of controlling braking torque linearly and responding fast to the magnetic field changed. The temperature of MR fluid will increase when the vehicle is engaged in continuous braking. MR fluid temperature changes will cause a bad influence on the efficiency stability of auxiliary braking.
Technical Paper

Effects of Different Oil Inlet and Outlet Distribution on Hydraulic Retarder

2014-09-28
2014-01-2498
The paper studies on the basis of VOITH R133-2 hydraulic retarder, the inlet and outlet structures of the oil passage on the stator are rearranged, which are made a more uniform structure distribution. In order to find out the characteristics of this kind of structure arrangement. The flow passage models for two different structures are established, and the internal flow field characteristics are studied by using the CFD (Computational Fluid Dynamics) method. The flow rules of the internal oil, the distribution of pressure field and velocity field as well as output braking torque are obtained. The results show that rearranged structure retarder has a more uniform pressure distribution and a lower output braking torque than original structure retarder. And the simulation verifies the effectiveness of simulating true flow by CFD in hydraulic retarder flow field and conduct retarder design and structure optimization.
Technical Paper

Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect

2017-03-28
2017-01-0155
The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
Technical Paper

Kalman Filter Slope Measurement Method Based on Improved GA-BP

2020-04-14
2020-01-0897
How to improve the measurement accuracy of road grade is the key content of the research on the speed warning of commercial vehicles in mountainous roads. If there is a large measurement error, the obtained speed threshold will be biased, posing a safety hazard. Conventional measuring instruments such as accelerometers and gyroscopes generally have noise fluctuation interference or time accumulation error, resulting in large measurement errors. In response to this situation, the Kalman filter method is often used for filtering to reduce the interference of unwanted signals, thereby improving the accuracy of the slope measurement. However, the Kalman filtering method is limited by the estimation error of various parameters, and the filtering effect is difficult to meet the project research requirements.
Technical Paper

Real-time and accurate estimation of road slope for intelligent speed planning system of commercial vehicle

2020-04-14
2020-01-0115
In the intelligent speed planning system, real-time estimation of road slope is the key to calculate slope resistance and realize the vehicles’ active safety control. However,if the road slope is measured by the sensor while the commercial vehicle is driving, the vibration of the vehicle body will affect its measurement accuracy. Therefore, the relevant algorithm is used to estimate the real-time slope of the road when the commercial vehicle is driving. At present, many domestic and foreign scholars have analyzed and tested the estimation of road slope by the least square method or kalman filter algorithm. Although the two methods both can achieve the estimation, the real-time performance and accuracy still need to be improved. In this paper, for traditional fuel commercial vehicle, the kalman filter algorithm based on the kinematics and the extended kalman filter algorithm based on the longitudinal dynamics are respectively used to estimate the road slope.
Technical Paper

Research on Road Simulator with Iterative Learning Control

2009-10-06
2009-01-2908
Road simulation experiment in laboratory is a most important method to enhance the design quality of vehicle products. Presently, two main control techniques for road simulation—remote parameter control (RPC) and minimum variance adaptive control—are both defective: the former becomes an open-loop control after generating the drive signals, however the latter is essentially a kind of gradual control. To realize the closed-loop control and increase the control quality, this article brings forward a PID open-closed loop control method. Firstly taking the original road simulator as a group to identify, a nonlinear autoregressive moving average (NARMA) model was built with the dynamic neural network. Subsequently, this plant model was used to build the open-closed loop control system mentioned above. In the closed-loop a discrete PID controller was introduced to stabilize the system, while a P-type iterative learning control (ILC) was adopted to increase the control quality.
Technical Paper

Research on the Best Driving Speed of the Deceleration Bump

2020-04-14
2020-01-1088
The ride performance and stability of the vehicle will decrease while the vehicle passing a deceleration bump with a relatively high speed. If the speed is too low, the road efficiency and ride comfort will be affected. It is essential to identify a proper speed taking all the factors into consideration. In this paper, the dynamic model of the vehicle passing through the deceleration bump is established. Two kinds of indicators,vibration weighted acceleration RMS and wheel load impact coefficient, are used to comprehensively evaluate the ride comfort and stability. The highway model, vehicle model and two common trapezoidal and circular cross-sections bump models are set up in Carsim. Parameters such as vertical acceleration and tire force at different vehicle speed are obtained. Then use the nonlinear least square method to fit the data, and comprehensively consider the two indicators to get the best speed.
Technical Paper

Research on the performance of Magnetorheological Fluid Auxiliary Braking devices thermal management system based on Flat Plate Heat Pipes

2020-04-14
2020-01-0894
To prevent the braking recession, heavy commercial vehicles are often equipped with fluid auxiliary braking devices, such as hydraulic retarder. Hydraulic retarder can convert the vehicle’s kinetic energy to the fluid heat energy, which can enormously alleviate the main brake’s workload. The traditional hydraulic retarder can provide enough braking torque but has a delay during the braking. In this paper, a new type of magnetorheological fluid (MR fluid) hydraulic retarder is introduced by replacing the traditional fluid with magnetorheological fluid because of its linear braking torque and quick response. By changing the magnetic field intensity, it is easier to control the braking torque than the traditional hydraulic retarder. The rise of magnetorheological fluid temperature during the braking period will reduce the hydraulic retarder’s performance.
Technical Paper

SUV Solar Roof with Photo-Thermal Effect for Ventilation ORC System

2016-04-05
2016-01-0240
The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
X