Refine Your Search

Topic

Author

Affiliation

Search Results

Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Technical Paper

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-04-16
2012-01-1118
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion: a comparison between Naturally Aspirated and Turbocharged Operation

2008-10-07
2008-36-0305
Controlled Auto-Ignition (CAI) also known as Homogeneous Charge Compression Ignition (HCCI) is increasingly seen as a very effective way of lowering both fuel consumption and emissions. Hence, it is regarded as one of the best ways to meet stringent future emissions legislation. It has however, still many problems to overcome, such as limited operating range. This combustion concept was achieved in a production type, 4-cylinder gasoline engine, in two separated tests: naturally aspirated and turbocharged. Very few modifications to the original engine were needed. These consisted basically of a new set of camshafts for the naturally aspirated test and new camshafts plus turbocharger for the test with forced induction. After previous experiments with naturally aspirated CAI operation, it was decided to investigate the capability of turbocharging for extended CAI load and speed range.
Technical Paper

A Combustion Heat Release Correlation for CAI Combustion Simulation in 4-Stroke Gasoline Engines

2005-04-11
2005-01-0183
One-dimensional engine simulation programmes are often used in the engine design and optimization studies. One of the key requirements of such a simulation programme is its ability to predict the heat release process during combustion. Such simulation software has built in it the heat release models for spark ignited premixed flame and compression ignited diesel combustion. The recent emergence of Controlled Auto Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has generated the need for a third type of heat release models for this new combustion process. In this paper, a heat release correlation for CAI combustion has been derived from extensive in-cylinder pressure data obtained from a Ricardo E6 single cylinder research engine and a multi-cylinder Port Fuel Injection (PFI) gasoline engine running with CAI combustion. The experimental data covered a wide range of air/fuel ratios, speed and percentage of residual gas.
Technical Paper

A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part 2: Implementation

1994-10-01
941957
The measurement of the instantaneous flame temperature and soot concentration in the combustion chamber of a running diesel engine can provide useful information relating to the formation of two important exhaust pollutants, NOx and particulates. The two-colour method is based on optical pyrometry and it can provide estimates of the instantaneous flame temperature and soot concentration. The theoretical basis of the method is outlined in a companion paper. This paper deals with the practical problems involved in the construction of a working system, including suitable calibration techniques. The accuracy of the measurements of flame temperature and soot concentration is also discussed using results from a various sources.
Technical Paper

A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part I: Principles

1994-10-01
941956
The two-colour method is based on optical pyrometry and can readily be implemented at a modest cost for the measurement of the instantaneous flame temperature and soot concentration in the cylinders of diesel engines. With appropriate modification, this method can be applied to other continuous and intermittent combustion systems, such as those for gas turbine and boiler burners. This paper outlines the theoretical basis of the method, with particular attention being paid to the assumptions relating to the evaluation of the flame temperature and soot concentration. A companion paper deals with the practical problems involved in constructing a working system, including suitable calibration techniques, and assessment of the method accuracy.
Technical Paper

A Study of Turbulent Flame Development with Ethanol Fuels in an Optical Spark Ignition Engine

2014-10-13
2014-01-2622
The work was concerned with experimental study of the turbulent flame development process of ethanol fuels in an optically accessed spark ignition research engine. The fuels were evaluated in a single cylinder engine equipped with full-bore overhead optical access and operated at typical stoichiometric part-load conditions. High-speed natural light (or chemiluminescence) imaging and simultaneous in-cylinder pressure data measurement and analysis were used to understand the fundamental influence of both low and high ethanol content on turbulent flame propagation and subsequent mass burning. Causes for the difference in cyclic variations were evaluated in detail, with comparisons made to existing burning velocity correlations where available.
Technical Paper

An Experimental Study on HCCI Combustion in a Four-Stroke Gasoline Engine with Reduced Valve Lift Operations

2005-10-24
2005-01-3736
To achieve homogeneous charge compression ignition (HCCI) combustion in the range of low speeds and loads, special camshafts with low intake/exhaust cam lift and short intake/exhaust cam duration were designed. The camshafts were mounted in a Ricardo Hydra four-stroke single cylinder port fuel injection gasoline engine. HCCI combustion was achieved by controlling the amount of trapped residuals from previous cycle through negative valve overlap. The results show that indicated mean effective pressure (IMEP) depends on valve timings, engine speeds and lambda. Early exhaust valve closing (EVC) timings result in high residual fractions in the cylinder and low air mass sucked into the cylinder. As a result, combustion duration increases, IMEP and peak pressure decrease. However, pumping losses decrease. High engine speed has the similar effect on HCCI combustion characteristics as early EVC timings do. But inlet valve opening timings have slight effect on IMEP compared to EVC timings.
Technical Paper

Analysis of Gaseous and PM Emissions of 4-Stroke CAI/HCCI and SI Combustion in a DI Gasoline Engine

2013-04-08
2013-01-1549
Direct injection gasoline engines have the potential for improved fuel economy through principally the engine down-sizing, stratified charge combustion, and Controlled Auto Ignition (CAI). However, due to the limited time available for complete fuel evaporation and the mixing of fuel and air mixture, locally fuel rich mixture or even liquid fuel can be present during the combustion process of a direct injection gasoline engine. This can result in significant increase in UHC, CO and Particulate Matter (PM) emissions from direct injection gasoline engines which are of major concerns because of the environmental and health implications. In order to investigate and develop a more efficient DI gasoline engine, a camless single cylinder DI gasoline engine has been developed. Fully flexible electro-hydraulically controlled valve train was used to achieve spark ignition (SI) and Controlled Autoignition (CAI) combustion in both 4-stroke and 2-stroke cycles.
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

Analysis of a Cost Effective Air Hybrid Concept

2009-04-20
2009-01-1111
The air hybrid engine absorbs the vehicle kinetic energy during braking, stores it in an air tank in the form of compressed air, and reuses it to propel a vehicle during cruising and acceleration. Capturing, storing and reusing this braking energy to give additional power can therefore improve fuel economy, particularly in cities and urban areas where the traffic conditions involve many stops and starts. In order to reuse the residual kinetic energy, the vehicle operation consists of 3 basic modes, i.e. Compression Mode (CM), Expander Mode (EM) and normal firing mode. Unlike previous works, a low cost air hybrid engine has been proposed and studied. The hybrid engine operation can be realised by means of production technologies, such as VVT and valve deactivation. In this work, systematic investigation has been carried out on the performance of the hybrid engine concept through detailed gas dynamic modelling using Ricardo WAVE software.
Technical Paper

Analysis of the Effect of Intake Plenum Design on the Scavenging Process in a 2-Stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2017-03-28
2017-01-1031
In this study, the effect of the intake plenum design on the scavenging process in a newly proposed 2-stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) engine was studied in detail by three dimensional (3D) computational fluid dynamics (CFD) simulations. In the BUSDIG engine, the intake scavenge ports are integrated into the cylinder liner and their opening and closure are controlled by the movement of piston top while exhaust valves are placed in the cylinder head. In order to accommodate the optimized scavenge ports in the real engine application, the intake plenum with an inlet pipe and a scavenge chamber was designed and connected to the 12 evenly distributed scavenge ports in a single cylinder BUSDIG engine.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

Characterization and Potential of Premixed Dual-Fuel Combustion in a Heavy Duty Natural Gas/Diesel Engine

2016-04-05
2016-01-0790
Natural Gas (NG) is currently a cost effective substitute for diesel fuel in the Heavy-Duty (HD) diesel transportation sector. Dual-Fuel engines substitute NG in place of diesel for decreased NOx and soot emissions, but suffer from high engine-out methane (CH4) emissions. Premixed Dual-Fuel Combustion (PDFC) is one method of decreasing methane emissions and simultaneously improving engine efficiency while maintaining low NOx and soot levels. PDFC utilizes an early diesel injection to adjust the flammability of the premixed charge, promoting more uniform burning of methane. Engine experiments were carried out using a NG and diesel HD single cylinder research engine. Key speeds and loads were explored in order to determine where PDFC is effective at reducing engine-out methane emissions over Conventional Dual-Fuel which uses a single diesel injection for ignition.
Technical Paper

Characterization of Low Load Ethanol Dual-Fuel Combustion using Single and Split Diesel Injections on a Heavy-Duty Engine

2016-04-05
2016-01-0778
The use of two different fuels to control the in-cylinder charge reactivity of compression ignition engines has been shown as an effective way to achieve low levels of nitrogen oxides (NOx) and soot emissions. The port fuel injection of ethanol on a common rail, direct injected diesel engine increases this reactivity gradient. The objective of this study is to experimentally characterize the controllability, performance, and emissions of ethanol-diesel dual-fuel combustion in a single cylinder heavy-duty engine. Three different diesel injection strategies were investigated: a late split, an early split, and an early single injection. The experiments were performed at low load, where the fuel conversion efficiency is typically reduced due to incomplete combustion. Ethanol substitution ratios varied from 44-80% on an energy input basis.
Technical Paper

Combustion Characteristics of CAI Combustion with Alcohol Fuels

2010-04-12
2010-01-0843
Due to its potential for simultaneous improvement in fuel consumption and exhaust emissions, controlled autoignition (CAI) combustion has been subject to continuous research in the last several years. At the same time, there has been a lot of interest in the use of alternative fuels in order to reduce reliance on conventional fossil fuels. Therefore, this experimental study has been carried out to investigate the effect of alcohol fuels on the CAI combustion process and on the resulting engine performance. The experimental work was conducted on an optical single cylinder engine with an air-assisted injector. To achieve controlled autoignition, residual gas was trapped in the cylinder by using negative valve overlap and an intake air heater was used to ensure stable CAI combustion in the optical engine. Methanol, ethanol and blended fuels were tested and compared with the results of gasoline.
Technical Paper

Combustion and Emission Characteristics of a HCCI Engine Fuelled with Different n-Butanol-Gasoline Blends

2014-10-13
2014-01-2668
Biobutanol, i.e. n-butanol, as a second generation bio-derived alternative fuel of internal combustion engines, can facilitate the energy diversification in transportation and reduce carbon dioxide (CO2) emissions from engines and vehicles. However, the majority of research was conducted on spark-ignition engines fuelled with n-butanol and its blend with gasoline. A few investigations were focused on the combustion and exhaust emission characteristics of homogeneous charge compression ignition (HCCI) engines fuelled with n-butanol-gasoline blends. In this study, experiments were conducted in a single cylinder four stroke port fuel injection HCCI engine with fully variable valve lift and timing mechanisms on both the intake and exhaust valves. HCCI combustion was achieved by employing the negative valve overlap (NVO) strategy while being fueled with gasoline (Bu0), n-butanol (Bu100) and their blends containing 30% n-butanol by volume (Bu30).
Technical Paper

Comparison of HCCI Combustion Respectively Fueled with Gasoline, Ethanol and Methanol through the Trapped Residual Gas Strategy

2006-04-03
2006-01-0635
In this paper, HCCI combustion characteristics of three typical high octane number fuels, gasoline, ethanol and methanol, are compared in a Ricardo single cylinder port injection engine with compression ratio of 10.5. In order to trap enough high temperature residual gas to heat intake mixture charge for stable HCCI combustion, camshafts of the experimental engine are replaced by a set of special camshafts with low valve lift and short cam duration. The three fuels are injected into the intake port respectively in different mixture volume percentages, which are E0 (100% gasoline), E50 (50% gasoline, 50% ethanol), E100 (100% ethanol), M50 (50% gasoline, 50% methanol) and M100 (100% methanol). This work concentrates on the combustion and emission characteristics and the available HCCI operation range of these fuels. What's more, the detailed comparison of in-cylinder temperature, ignition timing and other parameters has been carried out.
Technical Paper

Comparison of Performance, Efficiency and Emissions between Gasoline and E85 in a Two-Stroke Poppet Valve Engine with Lean Boost CAI Operation

2015-04-14
2015-01-0827
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Most research on CAI/HCCI combustion operations have been carried out in 4-stroke gasoline engines, despite it was originally employed to improve the part-load combustion and emission in the two-stroke gasoline engine. However, conventional ported two-stroke engines suffer from durability and high emissions. In order to take advantage of the high power density of the two-stroke cycle operation and avoid the difficulties of the ported engine, systematic research and development works have been carried out on the two-stroke cycle operation in a 4-valves gasoline engine. CAI combustion was achieved over a large range of operating conditions when the relative air/fuel ratio (lambda) was kept at one as measured by an exhaust lambda sensor.
X