Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Improvements in Diesel Combustion with After-Injection

2008-10-06
2008-01-2476
The effect of after-injection on exhaust gas emissions from a DI diesel engine with a common rail injection system was experimentally investigated for a range of operating conditions. The results showed that over the whole of the operating range, some reduction in smoke emissions can be achieved with after-injection, without deterioration in thermal efficiency and other emission characteristics. The optimum quantity of after-injection for smoke reduction is 20% of the total fuel supply, and the optimum timing is just after the main injection. Visualization in a bottom view type engine showed that with after-injection, soot formation in the main-injection decrease more due to a smaller quantity of fuel than without after-injection, and soot formation with after-injection is insignificant.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Mode Switch of SI-HCCI Combustion on a GDI Engine

2007-04-16
2007-01-0195
Multi-mode combustion is an ideal combustion strategy to utilize HCCI for internal combustion engines. It combines HCCI combustion mode for low-middle load and traditional SI mode for high load and high speed. By changing the cam profiles from normal overlap for SI mode to the negative valve overlap (NVO) for HCCI mode, as well as the adjustment of direct injection strategy, the combustion mode transition between SI and HCCI was realized in one engine cycle. By two-step cam switch, the throttle action is separated from the cam action, which ensures the stabilization of mode transition. For validating the feasibility of the stepped switch, the influence of throttle position on HCCI combustion was carefully studied. Based on the research, the combustion mode switch was realized in one engine cycle; the whole switch process including throttle action was realized in 10 cycles. The entire process was smooth, rapid and reliable without any abnormal combustion such as knocking and misfiring.
Technical Paper

Quantitative Measurements and Analysis of Ambient Gas Entrainment into Intermittent Gas Jets by Laser-Induced Fluorescence of Ambient Gas (LIFA)

1993-03-01
930970
Mixture formation processes of intermittent gas jets were visualized and quantified with high accuracy by a uniquely developed LIF technique (LIFA). Mixture strength inside gas jets was quantified by the fluorescence of iodine in the ambient gas excited by the sheet light of a Nd:YAG laser Two dimensional images of intermittent gas jets of various velocities were continuously recorded with VTR and quantified with high accuracy. The optimum conditions for measurements and accuracy with the LIFA technique were investigated. At the optimum setting of the initial iodine concentration in the ambient gas, accuracies better than 95% were obtained for the ambient gas entrainment ratio or jet concentration. The experimental results show that considerable amounts of ambient gas entrain just under the umbrella-like profile at the top of the jet. The mean jet concentration decreased with decreased nozzle diameter (D), and time elapsed after injection (Δt).
Technical Paper

Simultaneous Measurements of Concentration and Temperature Distributions in Unsteady Gas Jets by an Iodine LIF Method

1998-02-01
980146
A new method to simultaneously measure temperature and concentration distributions in unsteady gas jets was established with an adaptation of the laser-induced fluorescence of iodine molecules seeded into ambient gas. Using the temperature dependence of iodine fluorescence spectra, the local temperature inside jets was determined with the ratio between the fluorescence intensities of two visualized images with different wavelengths. Jet concentrations were also determined with the images for the temperature measurements. The method was applied to an unsteady argon jet injected into hot argon-iodine ambient gases. The experimental results showed that the local temperature distribution in an unsteady gas jet were quite similar to the local concentration distributions.
Technical Paper

Visualization and Heat Release Analysis of Premixed Diesel Combustion with Various Fuel Ignitabilities and Oxygen Concentrations in a Constant Volume Combustion Vessel

2013-04-08
2013-01-0899
Low NOx and soot free premixed diesel combustion can be realized by increasing ignition delays in low oxygen atmospheres, as well as the combustion here also depends on fuel ignitability. In this report single intermittent spray combustion with primary reference fuels and a normal heptane-toluene blend fuel under several oxygen concentrations in a constant volume combustion vessel was analyzed with high-speed color video and pressure data. Temperature and KL factor distributions are displayed with a 2-D two-color method. The results show that premixing is promoted with a decrease in oxygen concentration, and the local high temperature regions, above 2200 K, as well as the duration of their appearance decreases with the oxygen concentration. With normal heptane, mild premixed diesel combustion can be realized at 15 vol% oxygen and there is little luminous flame.
X