Refine Your Search

Topic

Search Results

Standard

Ball Joints

1996-09-01
HISTORICAL
J490_199609
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

Ball Stud and Socket Assembly - Test Procedures

2012-10-15
CURRENT
J193_201210
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Ball Stud and Socket Assembly-Test Procedures

1996-06-01
HISTORICAL
J193_199606
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J 491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application. The purpose of this document is to provide a uniform method of testing ball studs and ball stud and socket assemblies to ensure that the parts will meet functional requirements of the application.
Standard

Decorative Anodizing Specification for Automotive Applications

2013-03-28
CURRENT
J1974_201303
This SAE Recommended Practice is aimed at ensuring high-quality products of anodized aluminum automotive components in terms of durability and appearance. Decorative sulfuric acid anodizing has been well developed over the last several decades in the aluminum industry. Exterior and interior performance demonstrated that parts processed to this document meet long-term durability requirements. Since the treatment of processing variables is outside the scope of this document, it is important for applicators of this coating to develop an intimate knowledge of their process, and control all parameters that affect the quality of the end product. The use of techniques such as statistical process control (SPC), capability studies, design of experiments, process optimization, etc., are critical to produce material of consistently high quality.
Standard

FATIGUE TESTING PROCEDURE FOR SUSPENSION-LEAF SPRINGS

1990-06-30
HISTORICAL
J1528_199006
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

Fatigue Testing Procedure for Suspension-Leaf Springs

2016-04-05
CURRENT
J1528_201604
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Compression and Extension Spring Terminology

2006-09-12
HISTORICAL
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Springs: Specification Check Lists

2016-08-02
CURRENT
J1122_201608
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
Standard

Helical Springs: Specification Check Lists

2004-10-11
HISTORICAL
J1122_200410
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO CUSTOMARY U.S. UNITS

1992-11-01
HISTORICAL
J510_199211
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO METRIC UNITS

1992-11-01
HISTORICAL
J1123_199211
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2007-06-15
HISTORICAL
J2800_200706
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2016-04-01
CURRENT
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Leaf Springs For Motor Vehicle Suspension - Made to Metric Units

2016-04-05
CURRENT
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Leaf Springs for Motor Vehicle Suspension - Made to Customary U.S. Units

2016-04-05
CURRENT
J510_201604
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Rated Suspension Spring Capacity

2004-10-25
CURRENT
J274_200410
The Rating Suspension Spring Capacity definition has been developed to assist engineers and designers in the preparation of specifications and descriptive material and values relating thereto.
Standard

STAINLESS STEEL 17-7 PH SPRING WIRE AND SPRINGS

1994-07-01
HISTORICAL
J217_199407
This SAE Recommended Practice covers a high-quality corrosion-resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
X