Refine Your Search

Topic

Search Results

Standard

ABRASION RESISTANCE TESTING—VEHICLE EXTERIOR GRAPHICS AND PIN STRIPING

1989-06-01
HISTORICAL
J1847_198906
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

Abrasion Resistance Testing - Vehicle Exterior Graphics and Pin Striping

2021-01-07
CURRENT
J1847_202101
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

BALL JOINTS

1981-10-01
HISTORICAL
J490_198110
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications.
Standard

BALL STUD AND SOCKET ASSEMBLY PERFORMANCE TEST PROCEDURE

1970-08-01
HISTORICAL
J193_197008
The purpose of this test procedure is to provide a uniform method of testing ball stud and socket assemblies to determine their performance characteristics. This procedure is an extension of the dimensional requirements for ball stud assemblies as used in integral assembly. Parts should meet all provisions of this procedure which are applicable to the end use of the socket assembly being tested. All tests, except ball stud yield load, may be run using complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY TEST PROCEDURE

1979-04-01
HISTORICAL
J193A_197904
The purpose of this test procedure is to provide a uniform method of testing ball stud and socket assemblies to determine their functional characteristics. This procedure is an extension of the dimensional recommendations for ball studs as used in integral socket assemblies. All tests, except ball stud yield, may be run using complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY TEST PROCEDURE

1979-04-01
HISTORICAL
J193_197904
The purpose of this test procedure is to provide a uniform method of testing ball stud and socket assemblies to determine their functional characteristics. This procedure is an extension of the dimensional recommendations for ball studs as used in integral socket assemblies. All tests, except ball stud yield, may be run using complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY TEST PROCEDURES

1987-02-01
HISTORICAL
J193_198702
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY—TEST PROCEDURES

1996-06-19
HISTORICAL
J193_199606
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Ball Stud and Socket Assembly - Test Procedures

2012-10-15
CURRENT
J193_201210
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Coach Joint Fracture Test

2021-01-07
CURRENT
J1863_202101
This SAE Recommended Practice defines a procedure for determining the cleavage strength of an adhesive used for bonding automotive oily metal substrates.
Standard

DECORATIVE ANODIZING SPECIFICATION FOR AUTOMOTIVE APPLICATIONS

1993-06-01
HISTORICAL
J1974_199306
Detailed in this SAE Recommended Practice are interior and exterior bright or electrolytically colored anodized aluminum automotive components in the form of seat trim, dashboard, window or side body mouldings, bumpers, wheels, rocker panel, etc.
Standard

ELASTOMERIC BUSHING "TRAC" APPLICATION CODE

1994-10-01
HISTORICAL
J1883_199410
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Fuel and Oil Hoses

1998-06-01
HISTORICAL
J30_199806
This SAE Standard covers fuel and oil hose, coupled and uncoupled, for use with gasoline, oil, diesel fuel, lubrication oil, or the vapor present in either the fuel system or in the crankcase of internal combustion engines in mobile, stationary, and marine applications. Sections 7 and 11 cover hose intended to meet the demands of fuel injection systems. Sections 10 and 11 cover hose intended to meet low fuel permeation requirements. Section 3 covers Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R2). Section 4 covers Lightweight Braided Reinforced Lacquer, Cement, or Rubber Covered Hose (SAE 30R3). Section 5 covers Wire Inserted Synthetic Rubber Tube and Cover (SAE 30R5). Section 6 covers Low-Pressure Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R6), (SAE 30R7), (SAE 30R8). Section 7 covers Fuel Injection Hose Medium-Pressure Coupled and Uncoupled Synthetic Rubber Tube and Cover (SAE 30R9).
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Compression and Extension Spring Terminology

2006-09-12
HISTORICAL
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2007-06-15
HISTORICAL
J2800_200706
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2016-04-01
CURRENT
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
X