Refine Your Search

Topic

Search Results

Standard

BALL JOINTS

1981-10-01
HISTORICAL
J490_198110
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications.
Standard

BALL JOINTS

1996-09-01
HISTORICAL
J490_199609
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

Ball Joints

2012-10-15
CURRENT
J490_201210
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

Coach Joint Fracture Test

2021-01-07
CURRENT
J1863_202101
This SAE Recommended Practice defines a procedure for determining the cleavage strength of an adhesive used for bonding automotive oily metal substrates.
Standard

ELASTOMERIC BUSHING "TRAC" APPLICATION CODE

1994-10-01
HISTORICAL
J1883_199410
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

ELECTRIC HOURMETER SPECIFICATION

1983-03-01
HISTORICAL
J1378_198303
This SAE Recommended Practice establishes minimum requirements for electric hourmeters for general vehicular applications.
Standard

ELECTROPLATING OF NICKEL AND CHROMIUM ON METAL PARTS—AUTOMOTIVE ORNAMENTATION AND HARDWARE

1985-02-01
HISTORICAL
J207_198502
This standard covers requirements for several types and grades of electrodeposited nickel/chromium coatings on ferrous or copper alloy basis metals and copper/nickel/chromium on zinc or aluminum alloys for the finishing and corrosion protection of decorative ornamentation and hardware of motor vehicles and marine controls and fittings. Four grades of coatings are provided to correlate with the service conditions under which each is expected to provide satisfactory performance, namely: very severe, severe, moderate, and mild. Definitions and typical examples of these service conditions are provided in Appendix A.1 Information contained in this document generally conforms to the information contained in ASTM B 456, Specification for Electrodeposited Coatings of Nickel plus Chromium.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Electroplating of Nickel and Chromium on Metal Parts - Automotive Ornamentation and Hardware

2012-05-11
CURRENT
J207_201205
This standard covers requirements for several types and grades of electrodeposited nickel/chromium coatings on ferrous or copper alloy basis metals and copper/nickel/chromium on zinc or aluminum alloys for the finishing and corrosion protection of decorative ornamentation and hardware of motor vehicles and marine controls and fittings. Four grades of coatings are provided to correlate with the service conditions under which each is expected to provide satisfactory performance, namely: very severe, severe, moderate, and mild. Definitions and typical examples of these service conditions are provided in Appendix A.1 Information contained in this document generally conforms to the information contained in ASTM B 456, Specification for Electrodeposited Coatings of Nickel plus Chromium.
Standard

FATIGUE TESTING PROCEDURE FOR SUSPENSION-LEAF SPRINGS

1990-06-30
HISTORICAL
J1528_199006
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

Fatigue Testing Procedure for Suspension-Leaf Springs

2016-04-05
CURRENT
J1528_201604
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Compression and Extension Spring Terminology

2006-09-12
HISTORICAL
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Springs: Specification Check Lists

2004-10-11
HISTORICAL
J1122_200410
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
Standard

Helical Springs: Specification Check Lists

2016-08-02
CURRENT
J1122_201608
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
X