Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Theory of Cyclic Variations in Small Two-Stroke Cycle Spark Ignited Engines - An Analytical Validation of Experimentally Observed Behaviour

1992-02-01
920426
Causes leading to cyclic variations and resulting in misfiring in a two-stroke cycle spark-ignited engine are explained through analytical validation of experimentally observed behaviour. Experimental observation of pressure-time (P-t) histories of individual cycles suggests that cyclic variations are dependent on combustion delay and initial flame development and that local factors near the spark plug are mainly responsible for this. This has been used to build a hypothesis to explain the behaviour of poor cycles and to predict theoretically, using a quasi-dimensional thermodynamic model, the P-t histories of the individual cycles for comparison with the experimental results. It is observed that the gross mixture quality of each cycle is not an important factor for initial flame development, which depends mainly on the local conditions around the spark plug. For the engine under study, the reasons for the behaviour of poor cycles was attributed to poor scavenging near the spark plug.
Technical Paper

A comparative study of Performance and Emission Characteristics of a CRDe SUV fueled with Biodiesel blends & Diesel fuel

2008-01-09
2008-28-0075
The methyl esters of vegetable oils known as biodiesel, are receiving increasing interests because of their potential for low environmental impact as an alternative fuel to diesel vehicles. There is not much data collected on engine and vehicles using biodiesel from non-edible oils, particularly on new generation Common Rail Diesel Engines (CRDe).The present experimental study reports the performance and exhaust emissions of a CRDe engine using 10% & 20% (by vol.) blends of Jatropha and Karanja oil methyl ester (JCME & KOME) with conventional diesel fuel. To begin with studies were conducted on a SUV, powered by Euro III / BSIII optimized ECU controlled 2.6 l Common Rail Diesel engine (CRDe) configured with a diesel oxidation catcon and exhaust gas recirculation system. The impact of using biodiesel blends was studied in terms of cold startability, drivability, acceleration, max speed, gradeability, fuel economy and exhaust emissions.
Technical Paper

Abnormal Combustion in a Two-Stroke Spark Ignited Methanol Engine

1988-02-01
880174
Methanol (90% methanol + 10% gasoline) when used as a fuel in a 2-stroke spark ignition (SI) engine gave rise to abnormal combustion even at a low compression ratio. The regime of engine operation in which abnormal combustion occurs was identified and the effects of engine parameters such as mixture strength, compression ratio, ignition timing, combustion chamber geometry etc. were studied. Analysis of pressure-time histories of engine cycles when abnormal combustion occurred revealed that abnormal combustion at higher loads is similar to knocking in four-stroke engines. At light loads the nature of abnormal combustion was different. The CFR octane rating of methanol does not correlate with actual anti-knock quality in two-stroke engine combustion. Comparison with primary reference fuels indicated that the two-stroke engine has a very high severity. The hot residual gases seem to have a major role on onset of abnormal combustion.
Technical Paper

An Experimental Investigation of Combustion, Emissions and Performance of a Diesel Fuelled HCCI Engine

2012-01-09
2012-28-0005
Homogeneous charge compression ignition (HCCI) is an advanced combustion concept that is developed as an alternative to diesel engines with higher thermal efficiency along with ultralow NOx and PM emissions. To study the performance of this novel technique, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode while other cylinder operates in conventional CI mode. The quality of homogeneous mixture of air and fuel is the key feature of HCCI combustion. Low volatility of diesel is a major hurdle in achieving HCCI combustion because it is difficult to make a homogeneous mixture of air and fuel. This problem is resolved by external mixture preparation technique in uses a dedicated diesel vaporizer with an electronic control system. All the injection parameters such as fuel quantity, fuel injection timing, injection delay etc., are controlled by the injection driver circuit.
Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Technical Paper

An Experimental Study of Microscopic Spray Characteristics of a GDI Injector Using Phase Doppler Interferometry

2016-02-01
2016-28-0006
Gasoline Direct Injection (GDI) engine is known for its higher power and higher thermal efficiency. Researchers are steadily determining and resolving the problems of fuel injection in a GDI engine. In order to meet the stringent emission norms such as PM and NOx emitted by a GDI engine, it is necessary to investigate the microscopic spray characteristics and fuel-air mixing process. This paper aims to share the fundamental knowledge of the interacting mixture preparation mechanisms at the wide range of fuel injection pressures. The investigations were carried out at five different fuel injection pressures viz: 40, 80, 120, 160, 200 bar, for 24 mg fuel per injection. A high speed CCD camera was used to determine the macroscopic spray characteristics of the GDI injector. It was found that spray penetration length increased with increasing fuel injection pressure. Phase Doppler Interferometry (PDI) was used to determine the droplet size and droplet velocity for different test fuels.
Journal Article

An Experimental Study of Turbocharged Hydrogen Fuelled Internal Combustion Engine

2015-01-14
2015-26-0051
Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
Technical Paper

CI/PCCI Combustion Mode Switching of Diesohol Fuelled Production Engine

2017-03-28
2017-01-0738
Premixed charge compression ignition (PCCI) combustion is an advanced combustion technique, which has the potential to be operated by alternative fuels such as alcohols. PCCI combustion emits lower oxides of nitrogen (NOx) and particulate matter (PM) and results thermal efficiency similar to conventional compression ignition (CI) engines. Due to extremely high heat release rate (HRR), PCCI combustion cannot be used at higher engine loads, which make it difficult to be employed in production grade engines. This study focused on development of an advanced combustion engine, which can operate in both combustion modes such as CI combustion as well as PCCI combustion mode. This Hybrid combustion system was controlled by an open engine control unit (ECU), which varied the fuel injection parameters for mode switching between CI and PCCI combustion modes.
Technical Paper

Combustion Characteristics and Optimization of Neat Biodiesel on High Speed Common Rail Diesel Engine Powered SUV

2009-11-02
2009-01-2786
Biodiesel is a nontoxic, biodegradable and renewable fuel with a potential to reduce engine exhaust emissions. Biodiesel used for the current work is jatropha methyl ester (JME). Earlier research, when biodiesel used in neat form, showed deterioration of performance when compared with diesel. The scope of current work is to match the existing diesel performance in all aspects, when the vehicle is fuelled by neat biodiesel (Jatropha). Matching diesel performance with biodiesel was done by remapping electronic control module. This results in power increase, but the vehicle emissions and noise level tends to increase. So tradeoff between performance and emission is achieved by optimizing the engine parameters. Comparative performance was taken with normal diesel and biodiesel in neat form. Different engine characteristics like torque, power, thermal efficiency, exhaust temperature and noise along with emission such as HC, CO, NOx, and Smoke were studied.
Technical Paper

Combustion Characteristics of Jatropha Oil Blends in a Transportation Engine

2008-04-14
2008-01-1383
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. However, several operational and durability problems of using straight vegetable oils in diesel engines are reported in the literature, caused by of their higher viscosity and low volatility compared to mineral diesel. In the present research, experiments were designed to study the effect of reducing Jatropha oil's viscosity by blending it with mineral diesel and thereby eliminating the effect of high viscosity and poor volatility on combustion characteristics of the engine. Experimental investigations have been carried out to examine the combustion characteristics of an indirect injection transportation diesel engine running with diesel, and jatropha oil blends with diesel.
Technical Paper

Combustion Characteristics of Rice Bran Oil Derived Biodiesel in a Transportation Diesel Engine

2005-10-23
2005-26-354
The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine and they would not require significant modification of existing engine hardware. Methyl ester of rice bran oil (ROME) is derived through transesterification process. Previous research has shown that ROME has comparable performance, lower bsfc in comparison to diesel. There was reduction in the emissions of CO, HC, and smoke but NOx emissions increased. Experimental investigations have been carried out to examine the combustion characteristics in a direct injection transportation diesel engine running with diesel, and 20% blend of rice bran methyl ester with diesel.
Technical Paper

Combustion and Emission Behavior of Ethanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

2008-01-09
2008-28-0064
The Homogeneous charge compression ignition (HCCI) is the third alternative for the combustion in the reciprocating engine. HCCI a hybrid of well-known spark ignition (SI) and compression ignition (CI) engine concepts and has potential of combining the best features of both. A two cylinder, four stroke, direct injection diesel engine was modified to operate one cylinder on the compression ignition by detonation of homogeneous mixture of ethanol and air. The homogeneous mixture of the charge is prepared by port injection of ethanol in the preheated Intake air. This study presents results of experimental investigations of HCCI combustion of ethanol at intake air temperature of 120°C and at different air-fuel ratios. In this paper, the combustion parameters, pressure time history, rate of pressure rise, rate of heat release, mean temperature history in the combustion chamber is analyzed and discussed.
Technical Paper

Comparative Evaluation of Turbochargers for High Horsepower Diesel-Electric Locomotives

2013-04-08
2013-01-0930
Indian Railways have a fleet of high-horsepower diesel-electric locomotives rated at 2310 kW. These high horsepower diesel-electric locomotives have evolved from original design of 1940 kW locomotives. Adoption of new design turbochargers was essential for this upgrading efforts and a series of new design turbochargers were evaluated on the engine test-bed before their use on the diesel locomotives. The objective was to increase engine power output, improve fuel efficiency and limit thermal loading. Test-bed evaluation of different turbochargers was carried out for comparing five different turbochargers. Each turbocharger had different size nozzle ring, diffuser, turbine blade assembly, impeller and inducer. The compressor maps of turbochargers were used to plot the engine load lines and to calculate surge margins. The tests involved measuring critical parameters for various combinations of engine speed and load for every turbocharger.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
Technical Paper

Cyclic Variations in a Small Two-Stroke Cycle Spark-Ignited Engine - An Experimental Study

1992-02-01
920427
Two-stroke cycle engines have excessive speed fluctuations and poor part-throttle fuel economy as a consequence of cyclic combustion variations and irregular combustion, leading to misfiring. This study is to identify the nature of cyclic variations and the regime of irregular combustion in order to understand the possible causes for this phenomena. Studies were carried out on a 150 cc two-stroke cycle S.I. engine. Statistical evaluations of peak pressure(Pmax) and indicated mean effective pressure (imep) were used to characterize cyclic variations and irregular combustion. A parametric study on the effect of air fuel ratios, spark timing, engine speed, spark plug locations, throttle setting, and cylinder head shape on cyclic variations were carried out. The study has identified the regimes of stable combustion, irregular combustion and misfiring.
Technical Paper

DelHy 3W - Hydrogen Fuelled Hy-Alfa Three Wheeler

2013-04-08
2013-01-0224
The main objective of the project is to develop the hydrogen-fuelled vehicles for transport application. Exhaustive lab tests on engine & vehicle was done to access the hydrogen (H₂) behavior at varying operating conditions. Fifteen such hydrogen-fuelled vehicles were developed by Mahindra with integration of the optimized engine, fuel storage system, fuelling system and safety features to demonstrate these hydrogen vehicles. These vehicles are refueled at a dedicated hydrogen-refueling facility. Detailed calibration was done with hydrogen for meeting the performance and emissions characteristics of the engine. In this experimental investigation Electronic Control Unit (ECU)-based timed manifold injection system was developed. Hydrogen is injected before the intake manifold and the quantity of hydrogen injection is depending on the load, speed and operating conditions.
Technical Paper

Development And Characterization Of Biodiesel From Non-Edible Vegetable Oils Of Indian Origin

2004-01-16
2004-28-0079
Increased environmental awareness and depletion of fossil fuel resources are driving industry to develop alternative fuels that are environmentally more acceptable. Vegetable oils are potential alternative fuels. Vegetable oils in India are produced from numerous oil-seed crops. While all vegetable oils have high energy content, most require some processing to ensure safe usage in internal combustion engines. Most detrimental properties of oils are its high viscosity, low volatility and polyunsaturated character. The most widely used method is to convert vegetable oils into biodiesel. Biodiesel fuels are primary esters, which are produced by transesterifcation of vegetable oils. Several vegetable oil esters have been investigated so far in different parts of the world and found suitable to be used in diesel engines.
Technical Paper

Development of Hydrogen Powered Three Wheeler Engine

2013-01-09
2013-26-0002
This article is focused on the development of hydrogen fuelled engine with detailed exposure on its derivation from base Compressed Natural Gas (CNG) engine to discuss the phenomenon on backfiring, control strategies (to avoid knocking and backfiring) and its performance, emission characteristics. In this work, timed manifold injection system was developed to have efficient control over the fuel supply. To achieve the best performance and emission out of the engine, governing parameter like injector pulse width and ignition timing were optimized at full load, part load and idling. For comparison of the results with the same engine experiments were also conducted with base fuel CNG and gasoline using the conventional fuel supply system. It was experimentally observed that engine when fuelled with Hydrogen (H2) produces less maximum power compared to CNG and gasoline.
Technical Paper

Diesel Exhaust Particulate Characterization for Poly Aromatic Hydrocarbons and Benzene Soluble Fraction

2005-10-23
2005-26-348
This study was set out to characterize particulate emissions from diesel engines in terms of poly aromatic hydrocarbon emissions and Benzene Soluble Organic Fraction. The characteristics of DPM vary with engine operating conditions, quality of fuel and lubricants being used. Hence the diesel exhaust for the purpose of toxicity characterization needs to be studied for Organic Matter in terms of Poly Aromatic Hydrocarbon (PAH) and Benzene Soluble Fraction (BSF). Therefore, the objectives of the present research are to characterize the diesel exhaust particulate matter for the above parameters under varying engine operating conditions/loads. Six PAHs, namely Chrysene, Benzo (k) Flouranthene, Benzo (a) Pyrene, Dibenzo (a, h) Anthracene, Benzo (g,h,i) Perylene and Indenopyrene were analyzed on High Pressure Liquid Chromatography (HPLC). PAH concentrations in the particulates of Mahindra DI engine were affected by engine loads.
Technical Paper

Effect of Intake Charge Temperature and EGR on Biodiesel Fuelled HCCI Engine

2016-02-01
2016-28-0257
IC engines are facing two major challenges in the 21st century namely threat of fossil fuel depletion and environmental concerns. HCCI engine is an attractive solution to meet stringent emission challenges due to its capability to simultaneously reduce NOx and PM. HCCI technology can be employed with different alternative fuels without significant modifications in the existing engines. In this study, HCCI combustion was investigated using B20 (20% v/v biodiesel with diesel). Investigations were carried out on a two cylinder engine, in which one cylinder was modified to operate in HCCI mode however the other cylinder operated in conventional CI combustion mode. A dedicated fuel vaporizer was used for homogeneous fuel-air mixture preparation. The experiments were performed at three different intake charge temperatures (160°C, 180°C and 200°C) and three different EGR ratios (0%, 10% and 20% EGR) at different engine loads.
X