Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Configuration for a Continuously Variable Power-Split Transmission in Hybrid-Electric Vehicle Applications

2004-03-08
2004-01-0571
Continuously variable transmissions (CVTs) are usually used in small vehicles due to power limitations on the variable elements. Continuously variable power-split transmissions (CVPST) were developed in order to reduce the fraction of power passing through the variable elements [1,2]. The configuration presented in this paper includes a planetary gear train (PGT), which in combination with the CVT allows the power to be split and therefore increase the power envelope of the system. The PGT also provides a branch that can be used in a hybrid electric vehicle (HEV) operation through an electric motor. A conceptual design of a CVPST for a HEV is presented in this paper. The objectives are to show the different operational modes, with diagrams, perform a power analysis, develop the velocity and force equations and finally show the performance of the system with an example application.
Technical Paper

A Study of Emissions from CNG and Diesel Fueled Heavy-Duty Vehicles

1993-10-01
932826
The West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory was employed to conduct chassis dynamometer tests in the field to measure the exhaust emissions from heavy-duty buses and trucks. This laboratory began operation in the field in January, 1992. During the period January, 1992 through June, 1993, over 150 city buses, trucks, and tractors operated by 18 different authorities in 11 states were tested by the facility. The tested vehicles were powered by 14 different types of engines fueled with natural gas (CNG or LNG), methanol, ethanol, liquified petroleum gas (LPG), #2 diesel, and low sulfur diesel (#1 diesel or Jet A). Some of the tested vehicles were equipped with exhaust after-treatment systems. In this paper, a total of 12 CNG-fueled and #2 diesel-fueled transit buses equipped with Cummins L-10 engines, were chosen for investigation.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

An Investigation into the Emissions Reduction Performance of an SCR System Over Two Years' In-Use Heavy-Duty Vehicle Operation

2005-04-11
2005-01-1861
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
Technical Paper

Assessment of NOx Destruction in Diesel Engines by Injecting NO in the Intake Manifold

2005-04-11
2005-01-0370
Emissions from diesel engines, particularly NOx and TPM emissions are harmful to the environment. Reduction of NOx emissions from diesel engines is of increasing concern. In 1998, a novel approach called Selective NOx Recirculation (SNR) was used to reduce NOx emissions in diesel engines. The SNR concept relies on two major parts, one to collect the NOx emissions from the exhaust by an adsorber, and another to decompose NOx using the in-cylinder combustion process by injecting the collected NOx emissions into the intake manifold at an elevated concentration. This paper deals with the destruction rates during the combustion process. A 1992 DDC series 60, 350 hp, 12.7 liter engine was connected to a 500 hp DC dynamometer. A full-scale dilution tunnel and analyzers capable of measuring continuous NOx, CO2, CO, HC, and PM in the exhaust were used.
Technical Paper

Biodiesel Blend Emissions of a 2007 Medium Heavy Duty Diesel Truck

2010-10-05
2010-01-1968
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
Technical Paper

Celebrating the Exclaim!

2003-03-03
2003-01-1260
West Virginia University redesigned a 2002 Ford Explorer and created a diesel electric hybrid vehicle to satisfy the goals of the 2002 FutureTruck competition. These goals were to demonstrate a 25% improvement in fuel economy, to reduce greenhouse gas emissions, to achieve California ULEV emissions, to demonstrate 1/8-mile acceleration of 11.5 seconds or less, and to maintain vehicular comforts and performance. West Virginia University's 2002 hybrid sport utility vehicle (SUV), the Exclaim!, meets or exceeds these goals. Using a post-transmission parallel configuration, WVU integrated a 2.5L Detroit Diesel Corporation engine along with a Unique Mobility 75kW electric motor to replace the stock drivetrain. With an emphasis on maintaining performance, WVU strived to improve areas where SUVs have traditionally performed poorly: fuel economy and emissions. Using regenerative braking, fuel economy has been significantly improved.
Technical Paper

Characterization and Abatement of Diesel Crankcase Emissions

2006-10-16
2006-01-3372
In 2007, the Environmental Protection Agency will begin measuring not only exhaust emissions from diesel engines, but also emissions from the crankcase if it is not vented into the engine intake. The 2007 government standards for emissions of carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and particulate matter (PM) will also become more restrictive. There is the additional concern that crankcase emissions from present day trucks and buses may impact the quality of air inside the vehicle. This paper presents data to characterize crankcase emissions and examines a crankcase emissions abatement system (CEAS), the New Condensator®, manufactured by World NCI. Rather than allowing crankcase emissions to leave via a vent tube, a CEAS re-circulates the emissions to the intake of the engine.
Technical Paper

Characterization of Emissions from Hybrid-Electric and Conventional Transit Buses

2000-06-19
2000-01-2011
Hybrid-electric transit buses offer benefits over conventional transit buses of comparable capacity. These benefits include reduced fuel consumption, reduced emissions and the utilization of smaller engines. Factors allowing for these benefits are the use of regenerative braking and reductions in engine transient operation through sophisticated power management systems. However, characterization of emissions from these buses represents new territory: the whole vehicle must be tested to estimate real world tailpipe emissions levels and fuel economy. The West Virginia University Transportable Heavy Duty Emissions Testing Laboratories were used to characterize emissions from diesel hybrid-electric powered as well as diesel and natural gas powered transit buses in Boston, MA and New York City.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Journal Article

Crankcase Particulate Emissions from Diesel Engines

2008-06-23
2008-01-1751
In 2007, US EPA implemented the rule that the crankcase emissions be added to the tailpipe emissions to determine the total emissions from a diesel engine if the crankcase were not closed, but few data exist to quantify crankcase emissions from earlier model diesel engines. This paper presents the results of a study on the measurement of the size distribution and number concentration of particulate matter (PM) emitted from the crankcase vents from four different diesel engines under different engine speeds and loads. The engines used in the study were a 1992 Detroit Diesel Series 60, a 1996 Caterpillar 3406E, a 1997 Cummins B5.9 and a 1995 Mack E7-400. The Detroit Diesel engine was tested on an engine dynamometer and crankcase and tailpipe particulates were observed at varying engine speeds and loads. The other three engines were mounted in vehicles, and crankcase PM was observed at several engine speeds with no external load.
Technical Paper

Development of a Vehicle Road Load Model for ECU Broadcast Power Verification in On-Road Emissions Testing

2006-10-16
2006-01-3392
The 1998 Consent Decrees between the United States Government and the settling heavy-duty diesel engine manufacturers require in-use emissions testing from post 2000 model year engines. The emissions gathered from these engines must be reported on a brake-specific mass basis. To report brake-specific mass emissions, three primary parameters must be measured. These are the concentration of each emission constituent, the exhaust mass flow rate, and the engine power output. The measurement of the concentration level and exhaust mass flow rate can be (and are generally) measured directly with instrumentation installed in the exhaust transfer tube. However, engine power cannot be measured directly for in-use emissions testing due to the direct coupling of the engine output shaft to the vehicle's transmission. Engine power can be inferred from the electronic control unit (ECU) broadcast of engine speed and engine torque.
Journal Article

Diesel Exhaust Aftertreatment with Scrubber Process: NOx Destruction

2012-05-15
2011-01-2440
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
Technical Paper

Effects of Average Driving Cycle Speed on Lean-Burn Natural Gas Bus Emissions and Fuel Economy

2007-01-23
2007-01-0054
Although diesel engines still power most of the heavy-duty transit buses in the United States, many major cities are also operating fleets where a significant percentage of buses is powered by lean-burn natural gas engines. Emissions from these buses are often expressed in distance-specific units of grams per mile (g/mile) or grams per kilometer (g/km), but the driving cycle or route employed during emissions measurement has a strong influence on the reported results. A driving cycle that demands less energy per unit distance than others results in higher fuel economy and lower distance-specific oxides of nitrogen emissions. In addition to energy per unit distance, the degree to which the driving cycle is transient in nature can also affect emissions.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Emissions Comparisons of Twenty-Six Heavy-Duty Vehicles Operated on Conventional and Alternative Fuels

1993-11-01
932952
Gaseous and particulate emissions from heavy-duty vehicles are affected by fuel types, vehicle/engine parameters, driving characteristics, and environmental conditions. Transient chassis tests were conducted on twenty-six heavy-duty vehicles fueled with methanol, compressed natural gas (CNG), #1 diesel, and #2 diesel, using West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory. The vehicles were operated on the central business district (CBD) testing cycle, and regulated emissions of carbon monoxide (CO), total hydrocarbon (HC), nitrogen oxides (NOx), and particulate matter (PM) were measured. Comparisons of regulated emissions results revealed that the vehicles powered on methanol and CNG produced much lower particulate emissions than the conventionally fueled vehicles.
Technical Paper

Emissions Modeling of Heavy-Duty Conventional and Hybrid Electric Vehicles

2001-09-24
2001-01-3675
Today's computer-based vehicle operation simulators use engine speed, engine torque, and lookup tables to predict emissions during a driving simulation [1]. This approach is used primarily for light and medium-duty vehicles, with large discrepancies inherently due to the lack of transient engine emissions data and inaccurate emissions prediction methods [2]. West Virginia University (WVU) has developed an artificial neural network (ANN) based emissions model for incorporation into the ADvanced VehIcle SimulatOR (ADVISOR) software package developed by the National Renewable Energy Laboratory (NREL). Transient engine dynamometer tests were conducted to obtain training data for the ANN. The ANN was trained to predict carbon dioxide (CO2) and oxides of nitrogen (NOx) emissions based on engine speed, torque, and their representative first and second derivatives over various time ranges.
Technical Paper

Emissions from a Legacy Diesel Engine Exercised through the ACES Engine Test Schedule

2008-06-23
2008-01-1679
Most transient heavy duty diesel emissions data in the USA have been acquired using the Federal Test Procedure (FTP), a heavy-duty diesel engine transient test schedule described in the US Code of Federal Regulations. The FTP includes both urban and freeway operation and does not provide data separated by driving mode (such as rural, urban, freeway). Recently, a four-mode engine test schedule was created for use in the Advanced Collaborative Emission Study (ACES), and was demonstrated on a 2004 engine equipped with cooled Exhaust Gas Recirculation (EGR). In the present work, the authors examined emissions using these ACES modes (Creep, Cruise, Transient and High-speed Cruise) and the FTP from a Detroit Diesel Corporation (DDC) Series 60 1992 12.7 liter pre-EGR engine. The engine emissions were measured using full exhaust dilution, continuous measurement of gaseous species, and filter-based Particulate Matter (PM) measurement.
Technical Paper

Evaluation of Methods for Determining Continuous Particulate Matter from Transient Testing of Heavy-Duty Diesel Engines

2001-09-24
2001-01-3575
The historical lack of continuous data for PM emissions from heavy-duty diesel engines hampers advanced inventory approaches and hampers second-by-second engine control optimization. Continuos PM data can be obtained using a Tapered Element Oscillating Microbalance (TEOM), but moisture correction of data is needed to remove unwanted transient components of the mass. Reasonable correlation can be found between TEOM data integrated over the cycle and conventional PM filter data. Considerable scatter was evident when continuous TEOM data were plotted against instantaneous power, but by dispersing the power in time a clearer relationship was evident. Continuous TEOM data showed the same gross trends as PM filter mass distributed over a cycle in proportion to instantaneous CO, but it was evident that this CO proportioning technique is at best approximate. Binning of PM mass rate as a function of vehicle speed and acceleration were also evaluated for inventory purposes.
X