Refine Your Search

Topic

Author

Search Results

Journal Article

An Enhanced Σ-Y Spray Atomization Model Accounting for Diffusion due to Drift-Flux Velocities

2020-04-14
2020-01-0832
Spray modeling techniques have evolved from the classic DDM (Discrete Drops Method) approach, where the continuous liquid jet is discretized into “drops” or “parcels” till advanced spray models often based on Eulerian approaches. The former technique, although computationally efficient, is essentially inadequate in highly dense jets, as in the near nozzle region of compression ignition engines, while the latter could lead to extreme levels of computational effort when resolved interface capturing methods, such as VoF (Volume of Fluids) and LS (Level-Set) types, are used. However, in a typical engineering calculation, the mesh resolution is considerably coarser than in these high fidelity computations. If one presumes that these interfacial details are far smaller than the mesh size, smoothing features over at least one cell ultimately results in a diffuse-interface treatment in a Eulerian framework.
Technical Paper

Analysis and Design of a New Air-Scoop for a Lamborghini Off Shore Race Engine

2004-06-08
2004-01-1855
In this paper, the intake system of the Lamborghini L804-V4 racing engine for the U.I.M. Class 1 World Off Shore Championship is analyzed. Since new rules by the Union Internationale Motonautique imposed the use of an air restrictor at the air scoop inlet, to limit the maximum engine power, it was necessary to redesign and optimize the entire air intake system. The work was carried out by exploiting both experimental and numerical approach in synergy in order to analyze the different characteristics and performance of a diffuser down stream the restrictor. The aim was to recover as much as possible kinetic energy in terms of static pressure in the air box. A further challenge to face was represented by the attempt to reduce the non-uniform air flow distribution to the different 12 cylinders, typical of this configuration.
Journal Article

Analysis of Diesel Spray Momentum Flux Spatial Distribution

2011-04-12
2011-01-0682
In the present paper the results of an experimental and numerical analysis of a common-rail, high pressure Diesel spray evolving in high counter pressure conditions is reported. The experimental study was carried out mainly in terms of spray momentum flux indirect measurement by the spray impact method; the measurement of the impact force time-histories, along with the CFD analysis of the same phenomenon, gave interesting insight in the internal spray structure. As well known, the overall spray structure momentum flux along with the injection rate measurements can be used to derive significant details about the in-nozzle flow and cavitation phenomena intensity. The same global spray momentum and momentum flux measurement can be useful in determining the jet-to-jet un-uniformities also in transient, engine-typical injection conditions which can assist in the matching process between the injection system and the combustion chamber design.
Technical Paper

Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine

2017-03-28
2017-01-0673
Radio Frequency Corona ignition systems represent an interesting solution among innovative ignition strategies for their ability to stabilize the combustion and to extend the engine operating range. The corona discharge, generated by a strong electric field at a frequency of about 1 MHz, produces the ignition of the air-fuel mixture in multiple spots, characterized by a large volume when compared to a conventional spark, increasing the early flame growth speed. The transient plasma generated by the discharge, by means of thermal, kinetic and transport effects, allows a robust initialization of the combustion even in critical conditions, such as using diluted or lean mixtures. In this work the effects of Corona ignition have been analyzed on a single cylinder optical engine fueled with gasoline, comparing the results with those of a traditional single spark ignition.
Technical Paper

Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine

2009-09-13
2009-24-0076
This paper presents the further development of an electro-hydraulic camless valve actuation system for internal combustion engines. The system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. Valve timing and duration are controlled by a pilot stage governed by a solenoid, fast-acting, three-way valve. Valve lift is controlled by varying the oil pressure of the power stage. The system exploits an energy recovery working principle that plays a significant role in reducing the power demand of the whole valve train. In the present paper a new HVC actuator design is presented and its performances in terms of valve lift profile, repeatability and landing are discussed. Experimental data obtained by the application of the HVC system to a motored, single-cylinder research engine have been used to support the numerical evaluation of the potentialities of non-conventional valve actuation in engine part-load operation.
Technical Paper

Artificial Intelligence Methodologies for Oxygen Virtual Sensing at Diesel Engine Intake

2012-04-16
2012-01-1153
In the last decades, worldwide automotive regulations induced the industry to dramatically increase the application of electronics in the control of the engine and of the pollutant emissions reduction systems. Besides the need of engine control, suitable fault diagnosis tools had also to be developed, in order to fulfil OBD-II and E-OBD requirements. At present, one of the problems in the development of Diesel engines is represented by the achievement of an ever more sharp control on the systems used for the pollutant emission reduction. In particular, as far as NOx gas is concerned, EGR systems are mature and widely used, but an ever higher efficiency in terms of emissions abatement, requires to determine as better as possible the actual oxygen content in the charge at the engine intake manifold, also in dynamic conditions, i.e. in transient engine operation.
Technical Paper

Burner Development for Light-Off Speed-Up of Aftertreatment Systems in Gasoline SI engines

2022-06-14
2022-37-0033
Emission legislation for passenger cars is requiring a drastic reduction of exhaust pollutants from internal combustion engines (ICE). In this framework, achieving a quick heating-up of the catalyst is of paramount importance to cut down the cold start emissions and meet future regulation requirements. This paper describes the development and the basic characteristics of a novel burner for gasoline engines exhaust systems designed for being activated immediately at engine cold start. The burner is comprised of a fuel injector, an air system, and an ignition device. The design of the combustion chamber is first presented, with a description of the air-fuel interactions and mixture formation processes. Swirl is used along with a flame-holder concept to anchor the flame at the mixer exit. Spray-swirl and spray-walls interaction are also discussed. Computational Fluid Dynamics (CFD) analyses have been used to investigate these aspects.
Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

2019-09-09
2019-24-0008
Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure.
Technical Paper

Combustion Behavior of an RF Corona Ignition System with Different Control Strategies

2018-04-03
2018-01-1132
It has been proved that Radio Frequency Corona, among other innovative ignition systems, is able to stabilize combustion and to extend the engine operating range in lean conditions, with respect to conventional spark igniters. This paper reports on a sensitivity analysis on the combustion behavior for different values of Corona electric control parameters (supply voltage and discharge duration). Combustion analysis has been carried out on a single cylinder PFI gasoline-fueled optical engine, by means of both indicating measurements and imaging. A high-speed camera has been used to record the natural luminosity of premixed flames and the obtained images have been synchronized with corresponding indicating acquisition data. Imaging tools allowed to observe and measure the early flame development, providing information which are not obtainable by a pressure-based indicating system.
Technical Paper

Common Rail HSDI Diesel Engine Combustion and Emissions with Fossil / Bio-Derived Fuel Blends

2002-03-04
2002-01-0865
In order to evaluate the potentialities of bioderived diesel fuels, the effect of fueling a 1.9 l displacement HSDI automotive Diesel engine with biodiesel and fossil/biodiesel blend on its emission and combustion characteristics has been investigated. The fuels tested were a typical European diesel, a 50% biodiesel blend in the reference diesel, and a 100% biodiesel, obtained by mixing rape seed methyl ester (RME) and recycled cooking oil (CME). Steady state tests were performed at two different engine speeds (2500 and 4000 rpm), and for a wide range of loads, in order to evaluate the behavior of the fuels under a large number of operating conditions. Engine performance and exhaust emissions were analyzed, along with the combustion process in terms of heat release analysis. Experimental evidences showed appreciably lower CO and HC specific emissions and a substantial increase in NOx levels. A significant reduction of smoke emissions was also obtained.
Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Technical Paper

Coupled Simulation of Nozzle Flow and Spray Formation Using Diesel and Biodiesel for CI Engine Applications

2012-04-16
2012-01-1267
A two-step simulation methodology was applied for the computation of the injector nozzle internal flow and the spray evolution in diesel engine-like conditions. In the first step, the multiphase cavitating flow inside injector nozzle is calculated by means of unsteady CFD simulation on moving grids from needle opening to closure. A non-homogeneous Eulerian multi-fluid approach - with three phases i.e. liquid, vapor and air - has been applied. Afterward, in the second step, transient data of spatial distributions of velocity, turbulent kinetic energy, dissipation rate, void fraction and many other relevant properties at the nozzle exit were extracted and used for the subsequent Lagrangian spray calculation. A primary break-up model, which makes use of the transferred data, is used to initialize droplet properties within the hole area.
Technical Paper

Dependence of Flow Characteristics of a High Performance S.I. Engine Intake System on Test Pressure and Tumble Generation Conditions - Part 1: Experimental Analysis

2004-03-08
2004-01-1530
In this paper an experimental analysis is carried out to evaluate the dependence of the flow characteristics in the intake system of a high performance 4 valve, Spark Ignition Internal Combustion Engine, on the experimental conditions at the steady flow test bench. Experimental tests are performed at different pressure levels on a Ducati Corse racing engine head, to measure the Discharge Coefficient Cd and the Tumble Coefficient NT, expanding the work already presented in a previous work by the same research group: with a new test bench, the maximum test pressure level is increased up to 24 kPa, while differently-shaped tumble adaptors are used to evaluate Nt. The study is aimed at determining the influence of the test pressure on Cd and NT measurements, and in particular of the tumble adaptor shape.
Technical Paper

Dependence of NVH Performance of Plastic Air Intake Manifolds on the Structural Design

2006-04-03
2006-01-0705
In recent years, automotive engine manufacturers are increasingly focusing their attention on noise generated by plastic air intake manifolds (AIMs). Due to their lower density and stiffness, some deficiencies in terms of acoustical properties have been observed for plastic intake systems compared to metallic manifolds. In this framework, it seems to be very important to address not only the issue of reducing inlet noise, but also noise radiated via the coupled fluid-structure interaction. In this work three AIMs, a baseline and two modified models, nominally having equal breathing performance, have been analyzed and compared. The modified ones presented ribs and stays for strengthening the structure. The analyses were performed with concurrent experimental and numerical validated procedures.
Technical Paper

Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend

2019-09-09
2019-24-0128
Ongoing development of a CFD framework for the simulation of primary atomization of a high pressure diesel jet is presented in this work. The numerical model is based on a second order accurate, polyhedral Finite Volume (FV) method implemented in foam-extend-4.1, a community driven fork of the OpenFOAM software. A geometric Volume-of-Fluid (VOF) method isoAdvector is used for interface advection, while the Ghost Fluid Method (GFM) is used to handle the discontinuity of the pressure and the pressure gradient at the interface between the two phases: n-dodecane and air in the combustion chamber. In order to obtain highly resolved interface while minimizing computational time, an Adaptive Grid Refinement (AGR) strategy for arbitrary polyhedral cells is employed in order to refine the parts of the grid near the interface. Dynamic Load Balancing (DLB) is used in order to preserve parallel efficiency during AGR.
Technical Paper

Development of a Model for the Simulation of a Reed Valve Based Secondary Air Injection System for SI Engines

2005-04-11
2005-01-0224
This paper describes a research activity, carried out at the University of Perugia, focused on the modelling of an automatic reed valve in a coupled fluid-structure approach. The application here concerned is a reed device used to control a Secondary Air Injection (SAI) system which allows ambient air to enter the exhaust pipe upstream of the catalyst (useful for the reduction of emissions in rich mixture engine operating conditions). Since currently no commercial codes are still available for simulating in a comprehensive way the non-linear dynamics of a reed valve device with position constraints, the main objective of the work is the calculation of the air mass flow rate admitted to the exhaust system through the reed, by means of a slim and easy software tool. The task is accomplished by integrating two different codes, developed by the authors.
Technical Paper

Development of an Electro-Hydraulic Camless VVA System

2007-09-16
2007-24-0088
Among variable valve actuation systems, fully flexible systems such as camless devices are the most attractive valvetrains for near-future engines. This paper presents a research activity about an electro-hydraulic camless system for internal combustion engines. The Hydraulic Valve Control (HVC) system uses hydraulic forces to open the valve while a mechanical spring is used for the closure. The system is fed by an hydraulic pump and two pressure regulators which provide two different pressure levels: a high pressure level (approximately 100 bar) for the pilot stage and a low adjustable pressure level (from 20 to 90 bar) for the actuator power stage. The valve opening duration is controlled by varying the timing of the opening signal of the pilot stage; the valve lift is adjusted varying the oil pressure of the power stage. From a general point of view, the HVC system is an open loop device for engine valve actuation.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

Engine Efficiency Measurements Using a 100 kHz Radio Frequency Corona Igniter

2023-08-28
2023-24-0041
Conventional spark-ignition engines are currently incapable of meeting rising customer performance demands while complying with even stringent pollutant-emissions regulations. As a result, innovative ignition systems are being developed to accomplish these targets. Radio-Frequency corona igniters stand out for their ability to accelerate early flame growth speed by exploiting the combined action of kinetic, thermal and transport effects. Furthermore, a volumetric discharge enables the promotion of combustion over a wide area, as opposed to the local ignition of traditional spark. The present work wants to evaluate the advantages of a Streamer-type Radio Frequency corona discharge at about 100 kHz with respect to those of traditional spark igniter.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
X