Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Analysis of Rear Seat Sled Tests with the 5th Female Hybrid III: Incorrect Conclusions in Bidez et al. SAE 2005-01-1708

2019-04-02
2019-01-0618
Objective: Sled test video and data were independently analyzed to assess the validity of statements and conclusions reported in Bidez et al. SAE paper 2005-01-1708 [7]. Method: An independent review and analysis of the test data and video was conducted for 9 sled tests at 35 km/h (21.5 mph). The 5th female Hybrid III was lap-shoulder belted in the 2nd or 3rd row seat of a SUV buck. For one series, the angle was varied from 0, 15, 30, 45 and 60 deg PDOF. The second series involved shoulder belt pretensioning and other belt modifications. Results: Bidez et al. [7] claimed “The lap belts moved up and over the pelvis of the small female dummy for all impact angles tested.” We found that there was no submarining in any of the tests with the production lap-shoulder belts. Bidez et al. [7] claimed “H3-5F dummies began to roll out of their shoulder belt at… 30 degrees. Complete loss of torso support was seen at 45 degrees without significant kinetic energy dissipation.”
Technical Paper

Characterization of Thoracic Spinal Development by Age and Sex with a Focus on Occupant Safety

2020-04-14
2020-01-0520
Spine degeneration can lower injury tolerance and influence injury outcomes in vehicle crashes. To date, limited information exists on the effect of age and sex on thoracic spine 3-dimensional geometry. The purpose of this study is to quantify thoracic spinal column and canal geometry using selected geometrical measurement from a large sample of CT scans. More than 33,488 scans were obtained from the International Center for Automotive Medicine database at the University of Michigan under Institutional Review Board approval (HUM00041441). The sample consisted of CT scans obtained from 31,537 adult and 1,951 pediatric patients between the ages of 0 to 99 years old. Each scan was processed semi-automatically using custom algorithms written in MATLAB (The Math Works, Natick, MA). Five geometrical measurements were collected including: 1) maximum spinal curvature depth (D), 2) T1-to-T12 vertical height (H), 3) Kyphosis Index (KI), 4) kyphosis angle, and 5) spinal canal radius.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
Technical Paper

Influence of DISH, Ankylosis, Spondylosis and Osteophytes on Serious-to-Fatal Spinal Fractures and Cord Injury in Rear Impacts

2019-04-02
2019-01-1028
Seats have become stronger over the past two decades and remain more upright in rear impacts. While head restraints are higher and more forward providing support for the head and neck, serious-to-fatal injuries to the thoracic and cervical spine have been seen in occupants with spinal disorders, such as DISH (diffuse idiopathic skeletal hyperostosis), ankylosis, spondylosis and/or osteophytes that ossify the joints in the spine. This case study addresses the influence of spinal disorders on fracture-dislocation and spinal cord injury in rear impacts with relatively upright seats. Nineteen field accidents were investigated where serious-to-fatal injuries of the thoracic and cervical spine occurred with the seat remaining upright or slightly reclined. The occupants were lap-shoulder belted, some with belt pretensioning and cinching latch plate.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
X