Refine Your Search


Search Results

Viewing 1 to 18 of 18
Technical Paper

A 3D Simulation Methodology for Predicting the Effects of Blasts on a Vehicle Body

Triggered explosions are increasingly becoming common in the world today leading to the loss of precious lives under the most unexpected circumstances. In most scenarios, ordinary citizens are the targets of such attacks, making it essential to design countermeasures in open areas as well as in mobility systems to minimize the destructive effects of such explosive-induced blasts. It would be rather difficult and to an extent risky to carry out physical experiments mimicking blasts in real world scenarios. In terms of mechanics, the problem is essentially one of fluid-structure interaction in which pressure waves in the surrounding air are generated by detonating an explosive charge which then have the potential to cause severe damage to any obstacle on the path of these high-energy waves.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

A Practical Approach for Cross-Functional Vehicle Body Weight Optimization

The goal of optimization in vehicle design is often blurred by the myriads of requirements belonging to attributes that may not be quite related. If solutions are sought by optimizing attribute performance-related objectives separately starting with a common baseline design configuration as in a traditional design environment, it becomes an arduous task to integrate the potentially conflicting solutions into one satisfactory design. It may be thus more desirable to carry out a combined multi-disciplinary design optimization (MDO) with vehicle weight as an objective function and cross-functional attribute performance targets as constraints. For the particular case of vehicle body structure design, the initial design is likely to be arrived at taking into account styling, packaging and market-driven requirements.
Technical Paper

A Study on Impact Perforation Resistance of Jute-Polyester Composite Laminates

Natural fiber-based composites such as jute-polyester composites have the potential to be more cost-effective and environment-friendly substitutes for glass fiber-reinforced composites which are commonly found in many applications. In an earlier study (Mache and Deb [1]), jute-polyester composite tubes of circular and square cross-sections were shown to perform competitively under axial impact loading conditions when compared to similar components made of bidirectional E-glass fiber mats and thermo-setting polyester resin. For jute-reinforced plastic panels to be feasible solutions for automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. In the current study, a systematic characterization of jute-polyester and glass-polyester composite laminates made by compression molding is at first carried out under quasi-static tensile, compressive and flexural loading conditions.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

An Assessment of Load Cell- and Accelerometer-Based Responses in a Simulated Impact Test

Load cells and accelerometers are commonly used sensors for capturing impact responses. The basic objective of the present study is to assess the accuracy of responses recorded by the said transducers when these are mounted on a moving impactor. In the present work, evaluation of the responses obtained from a drop-weight impact testing set-up for an axially loaded specimen has been carried out with the aid of an equivalent lumped parameter model (LPM) of the set-up. In this idealization, a test component such as a steel double hat section subjected to axial impact load is represented with a nonlinear spring. Both the load cell and the accelerometer are represented with linear springs, while the impactor comprising a hammer and a main body with the load cell in between are modelled as rigid masses. An experimentally obtained force-displacement response is assumed to be a true behavior of a specimen.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Technical Paper

Development Of A Practical Multi-disciplinary Design Optimization (MDO) Algorithm For Vehicle Body Design

The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
Journal Article

Efficient Approximate Methods for Predicting Behaviors of Steel Hat Sections Under Axial Impact Loading

Hat sections made of steel are frequently encountered in automotive body structural components such as front rails. These components can absorb significant amount of impact energy during collisions thereby protecting occupants of vehicles from severe injury. In the initial phase of vehicle design, it will be prudent to incorporate the sectional details of such a component based on an engineering target such as peak load, mean load, energy absorption, or total crush, or a combination of these parameters. Such a goal can be accomplished if efficient and reliable data-based models are available for predicting the performance of a section of given geometry as alternatives to time-consuming and detailed engineering analysis typically based on the explicit finite element method.
Technical Paper

Energy-Based Criteria for Crashworthiness Design of Aluminum Intensive Space Frame Vehicles

Space frame type vehicle construction with extruded aluminum members holds promise in terms of desirable vibration-resistant and crashworthiness characteristics. Efficient design of such vehicles for superior frontal crash performance can be accomplished by judicious use of validated finite element and lumped parameter modeling and analysis. However, design iterations can be reduced considerably by employing energy-absorption targets for key members such as front rails in arriving at the initial design concept. For the NCAP (New Car Assessment Program) test procedure, a constraint is laid in terms of achieving a desirable level of vehicle peak deceleration for occupant safety. Using the information obtained through analysis, a numerical target can be set for energy to be absorbed by front rails. For this energy target, a new relationship is then derived which can be utilized for preliminary design of rail cross-section and material strength.
Technical Paper

Lightweighting of an Automotive Front End Structure Considering Frontal NCAP and Pedestrian Lower Leg Impact Safety Requirements

The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
Journal Article

Numerical Prediction of Dynamic Progressive Buckling Behaviors of Single-Hat and Double-Hat Steel Components under Axial Loading

Hat sections, single and double, made of steel are frequently encountered in automotive body structural components such as front rails, B-Pillar, and rockers of unitized-body cars. These components can play a significant role in terms of impact energy absorption during collisions thereby protecting occupants of vehicles from severe injury. Modern vehicle safety design relies heavily on computer-aided engineering particularly in the form of explicit finite element analysis tools such as LS-DYNA for virtual assessment of crash performance of a vehicle body structure. There is a great need for the analysis-based predictions to yield close correlation with test results which in turn requires well-proven modeling procedures for nonlinear material modeling with strain rate dependence, effective representation of spot welds, sufficiently refined finite element mesh, etc.
Technical Paper

Performance of Lightweight Materials for Vehicle Interior Trim Subject to Monotonic Loading and Low Velocity Impact

The usage of lightweight materials such as plastics and their derivatives continues to increase in automobiles driven by the urgency for weight reduction. For structural performance, body components such as A-pillar or B-pillar trim, instrument panel, etc. have to meet various requirements including resistance to penetration and energy absorption capability under impact indentation. A range of plain and reinforced thermoplastics and thermosetting plastics has been considered in the present study in the form of plates which are subject to low velocity perforation in a drop-weight impact testing set-up with a rigid cylindrical indenter fitted to a tup. The tested plates are made of polypropylene (PP), nanoclay-reinforced PP of various percentages of nanoclay content, wood-PP composites of different volume fractions of wood fiber, a jute-polyester composite, and a hybrid jute-polyester reinforced with steel.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Technical Paper

Prediction of Front TTI in NHTSA Side Impact Using a Regression-Based Approach

Vehicle side impact performance is potentially affected by a large number of parameters which may be related to body stiffness and energy absorption characteristics, and packaging dimensions. An understanding of the principal variables controlling TTI (Thoracic Trauma Index) is fundamental to the achievement of high LINCAP (Lateral Impact New Car Assessment Program) rating especially for sedans. In the present study, the effects on TTI of the following are considered: response-related parameters such as velocity and intrusion (which are in turn related to body structure), countermeasures such as side airbag, and dummy to structure clearance dimensions. With the help of test data gathered from side impact tests carried out on cars and trucks at Ford, a new “best subset” regression model is developed and is shown to be able to predict TTI for a number of LINCAP tests which were not part of the suite used in the derivation of the model.
Technical Paper

Prediction of the Behaviors of Adhesively Bonded Steel Hat Section Components under Axial Impact Loading

Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Technical Paper

Use of Truncated Finite Element Modeling for Efficient Design Optimization of an Automotive Front End Structure

The present work is concerned with the objective of multi disciplinary design optimization (MDO) of an automotive front end structure using truncated finite element model. A truncated finite element model of a real world vehicle is developed and its efficacy for use in design optimization is demonstrated. The main goal adopted here is minimizing the weight of the front end structure meeting NVH, durability and crash safety targets. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value.