Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

Advanced Modeling of Diesel Particulate Filters to Predict Soot Accumulation and Pressure Drop

2011-09-11
2011-24-0187
Diesel particulate filters (DPFs) are recognized as the most efficient technology for particulate matter (PM) reduction, with filtration efficiencies in excess of 90%. Design guidelines for DPFs typically are: high removal efficiency, low pressure drop, high durability and capacity to resist high temperature excursions during regeneration events. The collected mass inside the trap needs to be periodically oxidized to regenerate the DPF. Thus, an in-depth understanding of filtration and regeneration mechanisms, together with the ability of predicting actual DPF conditions, could play a key role in optimizing the duration and number of regeneration events in case of active DPFs. Thus, the correct estimation of soot loading during operation is imperative for effectively controlling the whole engine-DPF assembly and simultaneously avoidingany system failure due to a malfunctioning DPF. A viable way to solve this problem is to use DPF models.
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Technical Paper

Combustion and Emission Characteristics of Fischer-Tropsch and Standard Diesel Fuel in a Single-Cylinder Diesel Engine

2001-09-24
2001-01-3517
The emissions reduction of Fischer-Tropsch (FT) diesel fuel has been demonstrated in several recent publications in both laboratory engine testing and in-use vehicle testing. Reduced emission levels have been attributed to several chemical and physical characteristics of the FT fuels including reduced density, ultra-low sulfur levels, low aromatic content and high cetane rating. Some of the effects of these attributes on the combustion characteristics in diesel engines have only recently been documented. In this study, a Ricardo Proteous, single-cylinder, 4-stroke DI engine is instrumented for in-cylinder pressure measurements. The engine was run at several steady engine states at multiple timing conditions using both federal low sulfur and natural gas derived FT fuels. The emissions and performance data for each fuel at each steady state operating conditions were compared.
Technical Paper

Comparative Emissions from Natural Gas and Diesel Buses

1995-12-01
952746
Data has been gathered using the West Virginia University Heavy Duty Transportable Emissions Laboratories from buses operating on diesel and a variety of alternate fuels in the field. Typically, the transportable chassis dynamo meter is set up at a local transit agency and the selected buses are tested using the fuel in the vehicle at the time of the test. The dynamometer may be set up to operate indoors or outdoors depending on the space available at the site. Samples of the fuels being used at the site are collected and sent to the laboratory for analysis and this information is then sent together with emissions data to the Alternate Fuels Data Center at the National Renewable Energy Laboratory. Emissions data are acquired from buses using the Central Business District cycle reported in SAE Standard J1376; this cycle has 14 ramps with 20 mph (32.2 km/h) peaks, separated by idle periods.
Technical Paper

Concentrations and Size Distributions of Particulate Matter Emissions from a Class-8 Heavy-duty Diesel Truck Tested in a Wind Tunnel

2003-05-19
2003-01-1894
In an effort to develop engine/vehicle test methods that will reflect real-world emission characteristics, West Virginia University (WVU) designed and conducted a study on a Class-8 tractor with an electronically controlled diesel engine that was mounted on a chassis dynamometer in the Old Dominion University Langley full-scale wind tunnel. With wind speeds set at 88 km/hr in the tunnel, and the tractor operating at 88 km/hr on the chassis dynamometer, a Scanning Mobility Particle Sizer (SMPS) was employed for measuring PM size distributions and concentrations. The SMPS was housed in a container that was attached to a three-axis gantry in the wind tunnel. Background PM size-distributions were measured with another SMPS unit that was located upstream of the truck plume. Ambient temperatures were recorded at each of the sampling locations. The truck was also operated through transient tests with vehicle speeds varying from 65 to 88 km/hr, with a wind speed of 76 km/hr.
Technical Paper

Consideration for Fischer-Tropsch Derived Liquid Fuels as a Fuel Injection Emission Control Parameter

1998-10-19
982489
The U.S. Department of Energy (DOE) is embarking on a program investigating the use of Fischer-Tropsch (FT) fuels as a premium quality substitute or blending agent in direct-injection compression-ignition (diesel) engines. This paper aims to direct attention to the processing of FT fuels, emissions issues, available engine technology and the opportunity offered by FT diesel fuels for emissions control when considering diesel injection techniques. In modern automotive and heavy duty direct-injected (DI) diesel engines, precise fuel injection control is critical for achievement of 1998 and 2004 NOX and PM emission levels. High injection pressures, pilot injection and injection rate shaping are all optimized to maximize efficiency and power and to minimize emissions. These parameters must be considered as variables in the trade-off scenario between NOX and PM. Another parameter that may be considered important is the fuel type.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

Creation and Evaluation of a Medium Heavy-Duty Truck Test Cycle

2003-10-27
2003-01-3284
The California Air Resources Board (ARB) developed a Medium Heavy-Duty Truck (MHDT) schedule by selecting and joining microtrips from real-world MHDT. The MHDT consisted of three modes; namely, a Lower Speed Transient, a Higher Speed Transient, and a Cruise mode. The maximum speeds of these modes were 28.9, 58.2 and 66.0 mph, respectively. Each mode represented statistically selected truck behavior patterns in California. The MHDT is intended to be applied to emissions characterization of trucks (14,001 to 33,000lb gross vehicle weight) exercised on a chassis dynamometer. This paper presents the creation of the MHDT and an examination of repeatability of emissions data from MHDT driven through this schedule. Two trucks were procured to acquire data using the MHDT schedule. The first, a GMC truck with an 8.2-liter Isuzu engine and a standard transmission, was tested at laden weight (90% GVW, 17,550lb) and at unladen weight (50% GVW, 9,750lb).
Technical Paper

Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer

1992-11-01
922435
The federal emission standards for heavy duty vehicle engines require the exhaust emissions to be measured and calculated in unit form as grams per break horse-power-hour (g/bhp-hr). Correct emission results not only depend on the precise emission measurement but also rely on the correct determination of vehicle energy consumption. A Transportable Heavy-Duty Vehicle Emission Testing Laboratory (THDVETL) designed and constructed at West Virginia University provides accurate vehicle emissions measurements in grams over a test cycle. This paper contributes a method for measuring the energy consumption (bhp-hr) over the test cycle by a chassis dynamometer. Comparisons of analytical and experimental results show that an acceptable agreement is reached and that the THDVETL provides accurate responses as the vehicle is operated under transient loads and speeds. This testing laboratory will have particular value in comparing the behavior of vehicles operating on alternative fuels.
Technical Paper

Determination of In-Use Brake-Specific Emissions from Off-Road Equipment Powered by Mechanically Controlled Diesel Engines

2002-05-06
2002-01-1756
Exhaust emissions from off-highway diesel engines are a significant contributor of both oxides of nitrogen (NOx) and particulate matter (PM) to air inventories. Yet, emissions research activities aimed solely at the off-highway arena have been minimal - largely overshadowed by the extensive efforts directed toward the on-highway sector. However, with current trends indicating that the performance of these off-highway vehicles will become increasingly more scrutinized by federal regulatory agencies, augmentation of current research efforts will be necessary. The global objective for this study was to collect vehicle activity information for diesel-powered off-highway vehicles while they were operated in the field. Engine speed and raw exhaust CO2 concentrations were recorded and then used to create engine dynamometer test cycles. The engine was exercised according to these cycles in the laboratory so that the mass emissions rates of exhaust gas pollutants could be measured.
Technical Paper

Development of A Microwave Assisted Regeneration System for A Ceramic Diesel Particulate System

1999-10-25
1999-01-3565
Specific aspects of a study aimed at developing a microwave assisted regeneration system for diesel particulate traps are discussed. Results from thermal and microwave characteristic studies carried out in the initial phase of the study are reported. The critical parameters that need to be optimized, for achieving controlled regeneration, are microwave preheating time period, regenerative air supply, regenerative air temperature, and soot deposition. Using a 1000 W magnetron, power measurements were made to select the best waveguide configuration for optimized transmission. A six cylinder naturally aspirated, indirect injection diesel engine was retrofitted with a customized exhaust system that included a Corning EX80 (5.66″ × 6.00″) type ceramic particulate trap. An automated exhaust bypass system enabled trap loading and subsequent regeneration with a customized microwave regeneration system. The paper discusses the salient details of both on-line and off-line regeneration setups.
Technical Paper

Development of a Vehicle Road Load Model for ECU Broadcast Power Verification in On-Road Emissions Testing

2006-10-16
2006-01-3392
The 1998 Consent Decrees between the United States Government and the settling heavy-duty diesel engine manufacturers require in-use emissions testing from post 2000 model year engines. The emissions gathered from these engines must be reported on a brake-specific mass basis. To report brake-specific mass emissions, three primary parameters must be measured. These are the concentration of each emission constituent, the exhaust mass flow rate, and the engine power output. The measurement of the concentration level and exhaust mass flow rate can be (and are generally) measured directly with instrumentation installed in the exhaust transfer tube. However, engine power cannot be measured directly for in-use emissions testing due to the direct coupling of the engine output shaft to the vehicle's transmission. Engine power can be inferred from the electronic control unit (ECU) broadcast of engine speed and engine torque.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Effects of Average Driving Cycle Speed on Lean-Burn Natural Gas Bus Emissions and Fuel Economy

2007-01-23
2007-01-0054
Although diesel engines still power most of the heavy-duty transit buses in the United States, many major cities are also operating fleets where a significant percentage of buses is powered by lean-burn natural gas engines. Emissions from these buses are often expressed in distance-specific units of grams per mile (g/mile) or grams per kilometer (g/km), but the driving cycle or route employed during emissions measurement has a strong influence on the reported results. A driving cycle that demands less energy per unit distance than others results in higher fuel economy and lower distance-specific oxides of nitrogen emissions. In addition to energy per unit distance, the degree to which the driving cycle is transient in nature can also affect emissions.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

2001-03-05
2001-01-0512
Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
X