Refine Your Search

Author

Search Results

Technical Paper

A Complex of Systems for Oxygen Recovery Aboard a Manned Space Station

1993-07-01
932275
As space flights tend to be more prolonged problems of oxygen generation by physicochemical means assume greater importance. The paper deals with the water, electrolysis process, CO2 concentration and processing organisation schemes. Some operational results of the system for electrolysis of aqueous alkali solution and CO2 removal on Mir space station are presented. Expected characteristics of the complex system for oxygen generation from carbon dioxide are considered.
Technical Paper

A Concept of Lunar Base Regenerative Water Management System Construction

1995-07-01
951603
A concept of developing a regenerative water management system (RWMS) for first lunar base missions is reviewed. The principal feature of the concept proposed is the maximum possible unification of RWMS for long-duration orbiting station and a lunar base with due regard to possible modification of the hardware for lunar gravity conditions. The paper is based on the expertise in research, development, testing and flight operation of RWMS in Russia. An upgraded RWMS of the International Space Station may be used for first lunar missions.
Technical Paper

A Man-Made Gas Atmosphere Simulation Model of International Space Station's Russian Segment

1998-07-13
981717
This paper deals with a man-made Gas Atmosphere (MMGA) Simulation Model developed and software presented for the Russian Segment of the International Space Station (ISS). The simulation Model (SM) is intended for analysis of the MMGA parameter nonstationary values in isothermal and non-isothermal conditions under a variable number of crew taking into account the intensities of the crew activity. The person's structure of the SM, basic assumptions, taken for modeling and formalized descriptions of SM separate modules. Formalized descriptions by the Segment's Pressurized Modules are based on using the nonlinear equations of mass/energy balance for the controlling volume, taking into account all main sources and sinks of the environment separate components, which are a crew, Integrated Regenerative Life Support System (IRLSS) separate subsystems, ISS on-board systems.
Technical Paper

A Physical/Chemical System for Water and Atmosphere Recovery Aboard a Space Station

1993-07-01
932077
The paper deals with the problems of development of physico-chemical systems for water recovery and atmosphere revitalization for long-duration space stations. Schematics of regenerative life support systems featuring a high degree of closure and biotechnological components are presented. A year-long experiment has proved the possibility for Man to stay in a closed artificial environment for a long time by consuming substances regenerated by physico-chemical means from the end products of life. A complex of the life support systems (LSS) on Mir space station allowing for oxygen and 90% water recovery as well as its future updating is considered.
Technical Paper

A Physico/Chemical System for Hygiene Waste Water Recovery

1993-07-01
932076
The paper deals with some aspects and results of research in major processes and hardware of a system for hygiene waste water recovery and its architecture concepts. A principal system schematic and its functions on Mir space station are presented. It is shown that physico-chemical means ensure cost-effective recovery with minimum energy demand and resupply which is particulary important for long-duration space missions.
Technical Paper

A Regenerative Water Supply System for the ISS Russian Segment

1999-07-12
1999-01-1951
This paper reviews the design and properties of the Water Supply System (WSS). It also discusses the water balance and its delivery amounts, as well as it presents diagrams and properties of water recovery system from humidity condensate WRS-CM and regeneration from urine WRS-UM which are the part of WSS. Some results of activities conducted for provision of water intake in a system of WRS-CM from different modules of station are shown and the problems of WSS interaction of Russian segment (RS) and American segment (USOS) of the International Space Station (ISS) are discussed.
Technical Paper

A Strategy of System Synthesis for Developing Integrated Regenerative Life Support Systems

1998-07-13
981719
This paper considers one of the possible approaches to the synthesis of technologies for developing future Integrated Regenerative Life Support Systems (IRLSS) for space vehicle crews. The solution of technology synthesis task involves the following phases: (a) the efficiency model structuring for technical decision making process; (b) presentation of a discrete set of alternative technologies and their formal description; (c) the decision making task introduction. Modified efficiency model under consideration is based on use of local efficiency criteria set, reflecting designed system and its subsystems properties, space vehicle properties for which this system is intended. For the local criteria after verification of the independence terms quantitative and qualitative efficiency factors are applied. The qualitative efficiency factors were evaluated on the scale of order. The consideration of uncertainty in criteria values is based on a fuzzy set theory.
Technical Paper

An Advanced Water Recovery Program

1996-07-01
961336
This paper reviews designs of urine distillation systems for spacecraft water recovery. Consideration is given to both air evaporation and vacuum distillation cycles, to the means for improving cycle performance (such as heat pumps, multistaging, and rotary evaporators), and to system concepts offering promise for future development. Vacuum distillation offers lower power consumption, at some increase in system complexity; air evaporation distillation is capable of providing higher water recovery efficiency, which could offset the lower power consumption advantage of vacuum distillation for long-duration missions.
Technical Paper

Development and Operation of the MIR Space Station System for Hygiene Waste Water Recovery

1994-06-01
941535
The paper deals with the system for hygiene water recovery developed for the Mir orbital space station. The paper presents a system schematic, its operation logic and the system component design. The results of system ground checkout tests and its operation on the Mir space station verify the system design solution adopted and the effectiveness of the procedures developed for system preservation and re-activation prior to and during station spaceflight.
Technical Paper

Development and Testing of a Vacuum Distillation Subsystem for Water Reclamation from Urine

1999-07-12
1999-01-1993
This paper reviews the development and testing of the distillation subsystem of water regeneration system from urine (WRS-UM) based on a method of vacuum distillation with a rotary multistage vacuum distiller and a thermal pump. Test results show that with relatively small power consumption the subsystem using rotary three-stage vacuum distiller provides high rates of heat and mass transfer processes, useful productivity and distillate quality. The conducted tests have confirmed that it will be efficient to use the presented system as a part of WRS-UM system in Russian segment of the International Space Station.
Technical Paper

Experience in Development and Long-term Operation of Mir's System for Oxygen Generation by Electrolysis

2000-07-10
2000-01-2356
The paper describes the design specifics of the system for oxygen generation by electrolysis Elektron and major results obtained in long-term operation of the system aboard space station Mir. Operational data analysis makes possible to draw a conclusion that the system is capable to attain life parameters for at least 2 years with maintaining serviceability for no less than 8 years without attendance and unit replacement. Based on flight operation the possibility of reducing power consumption by 10 per cent is proven. System design updates are realized in the water electrolysis system intended for the Russian segment of the international space station.
Technical Paper

Experience in Development and Operation of Systems for Water Recovery from Humidity Condensate for Space Stations

1995-07-01
951604
The paper analyzes and summarizes experience in developing and flight operation of the system for potable water recovery from humidity condensate. The system schematic and its hardware are reviewed. The system performance data on Salut and Mir space stations are presented. Succession to the development of a similar system for the International Space Station (ISS) service module is shown.
Technical Paper

Hydrodynamic and Heat-and-Mass Transfer Processes in Space Station Water Recovery Systems

1993-07-01
932075
The paper systematizes typical hydrodynamic and heat-and-mass transfer chemical engineering processes realized in water recovery systems. The impact of micro-gravity on the processes is analyzed and general principles of the process organization in gas/liquid fluids are described. As examples, some typical separation processes in a coccurred flow channel with liquid suction through a porous wall, liquid evaporation into a vapour/gas fluid and vapour condensation from the vapour/gas mixture are considered for water recovery systems. A versatile approach based on an extended analogy between friction, heat transfer and mass transfer and on limited relative laws of a boundary layer at the permeable surface is suggested for an analysis and calculation of the friction resistance of a two-phase flow, heat transfer and mass transfer on evaporation and condensation. Recommendations for an analysis of the influence of free convection are made.
Technical Paper

Off-normal Situations Related to the Operation of the Electron-VM Oxygen Generation System aboard the International Space Station

2005-07-11
2005-01-2803
The Electron-VM Oxygen Generation System (OGS) is a main source of oxygen for crew breathing on the International Space Station (ISS) and the result of updating the Electron-V OGS that has been in successful operation for 17 years on Mir Space Station. The successful accomplishment of a manned flight program primarily has resulted in the stable operation of the system. The paper deals with analysis of off-normal situations related to the operation of the Electron-VM on board ISS. The system switching-off analysis based on the telemetry information processing and the results of the additional tests conducted under flight and ground conditions is performed. A principal cause of system switching-offs is a reduction in the pressure built by the circulating pumps due to ingress of gas bubbles into the suction pipeline. The results of the Electron-VM OGS switching-off analysis and the practical recommendations regarding its prevention are reviewed.
Technical Paper

Operation Results Onboard the International Space Station and Development Tendency of Atmosphere Revitalization and Monitoring System

2004-07-19
2004-01-2494
The Regenerative Atmosphere Revitalization and Monitoring system (ARMS), been part of Integrated Life Support System (ILSS), is intended for maintenance in the manned modules of a necessary chemical composition of an artificial gas atmosphere (AGA) on base of the crew metabolism product transform to environment initial components. Generally, the ARMS structure includes the individual systems and units intended for: → oxygen generation; → carbon dioxide removal and it concentration; → trace contaminants removal; → carbon dioxide reduction with the goal to produce an additional quantity of water necessary to increase the degree of the oxygen loop clousure. The ARMS structure of the International Space Station (ISS) Russian Segment (RS) includes the Electron-VM Oxygen Generation System (OGS), Vozdukh Carbon Dioxide Removal System (CDRS) and SBMP Trace Contaminants Removal Means (TCRM) installed in the Service Module.
Technical Paper

Operation Simulation Modeling of Atmosphere Revitalization Systems for International Space Station Russian Segment

2000-07-10
2000-01-2367
This paper reviews Air Revitalization System (ARS) for Russian Segment of International Space Station software simulation development and implementation by the example the Service Module (SM) ARS. This simulation is designed for the ARS ground test functional analysis and in-flight support Individual ARS complex systems formal description is based on each system description as a unit, using information received from experiments and detailed simulations. Failure can be introduced for contingency simulation.
Technical Paper

Physical/Chemical Regenerative LSS for Planetary Habitations

1996-07-01
961549
A concept of LSS building for planetary stations is suggested on the basis of experience in the development, research and testing of physical/chemical regenerative LSS for long-duration ground-based bio-technical complexes of habitat support and for orbiting space stations. A gradual transition from integrated physical/chemical regenerative LSS to hybrid integrated physical/chemical and bio-technical LSS and finally to integrated bio-technical regenerative LSS, is suggested. It is shown that at all phases of integrated LSS development, the systems based on physical/chemical processes will be critical for correlating the interfaces between the biological components that process the products obtained in the bio-components, and enabling the vitality of integrated LSS under emergency situations. The interface of integrated LSS with base power supply system is outlined.
Technical Paper

Problems of Developing Systems for Carbon Dioxide Processing and Oxygen Generation by Electrolysis for Space Station

1994-06-01
941342
As space flights tend to be more prolonged problems of oxygen generation by physico-chemical means assume greater importance. The paper deals with the water electrolysis process and CO2 reduction. Some operational results of the system for water electrolysis on Mir space station are presented. Expected characteristics of the systems for water electrolysis and carbon dioxide reduction are considered.
Technical Paper

Rationale and Selection of a Distillation Subsystem for Water Reclamation from Urine

1998-07-13
981714
A selection of a distillation subsystem with a rotary multistage vacuum distiller (RMVD) and a heat pump (HP) for the system for water reclamation from urine for the international space station is substantiated. The results of computational/experimental analysis of specific energy for distillation with RMVD and HP of different type used are presented. The test results of an experimental system mockup are given. It is shown that the subsystem of a given type is stable in operation, features high condensate processing rate and low specific energy demand.
Technical Paper

SRV-K Status aboard the International Space Station and Water Recovery Future Prospects

2004-07-19
2004-01-2489
The paper deals with the performance data of the service module Zvezda integrated water supply system of the International Space Station (ISS) as of March 31, 2004. The water supply and demand balance are analyzed. It is shown that water recovery from humidity condensate has been especially important when water delivery by Space Shuttles was terminated. The SRV-K contribution in potable water supply for crew needs was up to 76%. The data of humidity condensate and recovered water compositions are reviewed. The effective cooperation of the international partners on part of life support is shown. Water recovery future prospects are discussed.
X