Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Geometric Dimensions and Tolerancing for Curved Hose

2021-03-08
CURRENT
J2370_202103
To provide the curved hose industry and their customers with a recommended practice for applying GD&T procedures to curved hoses and to provide generic curved hose drawings that represent the application of GD&T to typical curved hose parts. Dimensioning and Tolerancing will be in accordance with ASME Y14.5M.
Standard

Geometric Dimensions and Tolerancing for Curved Hose

2009-03-05
HISTORICAL
J2370_200903
To provide the curved hose industry and their customers with a recommended practice for applying GD&T procedures to curved hoses and to provide generic curved hose drawings that represent the application of GD&T to typical curved hose parts. Dimensioning and Tolerancing will be in accordance with ASME Y14.5M.
Standard

Geometric Dimensions and Tolerancing for Curved Hose

2003-12-19
HISTORICAL
J2370_200312
To provide the curved hose industry and their customers with a recommended practice for applying GD&T procedures to curved hoses and to provide generic curved hose drawings that represent the application of GD&T to typical curved hose parts. Dimensioning and Tolerancing will be in accordance with ASME Y14.5M.
Standard

Geometric Dimensions and Tolerancing for Curved Hose

2001-05-25
HISTORICAL
J2370_200105
To provide the curved hose industry and their customers with a recommended practice for applying GD&T procedures to curved hoses and to provide generic curved hose drawings that represent the application of GD&T to typical curved hose parts. Dimensioning and Tolerancing will be in accordance with ASME Y14.5M.
Standard

Non-Contact Hose Measurement Study 1

2001-08-06
HISTORICAL
J2605_200108
The Hose Measurement Task Force conducted a round-robin study to determine the measuring capability of automotive suppliers and users to simultaneously measure the Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall), and Wall thickness Variation (WV) of hose using a laser-based, non-contact LOTIS QC-20 gauging device. Three (3) companies (all end users) participated in this testing with one of the three companies performing the GR&R calculations presented herein. Based upon the round-robin study this report will detail procedures, test measuring devices, results, and conclusions.
Standard

Non-Contact Hose Measurement Study 1

2006-01-04
HISTORICAL
J2605_200601
The Hose Measurement Task Force conducted a round-robin study to determine the measuring capability of automotive suppliers and users to simultaneously measure the Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall), and Wall thickness Variation (WV) of hose using a laser-based, non-contact LOTIS QC-20 gauging device. Three (3) companies (all end users) participated in this testing with one of the three companies performing the GR&R calculations presented herein. Based upon the round-robin study this report will detail procedures, test measuring devices, results, and conclusions.
Standard

Non-Contact Hose Measurement Study 1

2015-04-21
CURRENT
J2605_201504
The Hose Measurement Task Force conducted a round-robin study to determine the measuring capability of automotive suppliers and users to simultaneously measure the Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall), and Wall thickness Variation (WV) of hose using a laser-based, non-contact LOTIS QC-20 gauging device. Three (3) companies (all end users) participated in this testing with one of the three companies performing the GR&R calculations presented herein. Based upon the round-robin study this report will detail procedures, test measuring devices, results, and conclusions.
X