Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

2011-04-12
2011-01-0829
RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Journal Article

Characterization of Flow Asymmetry During the Compression Stroke Using Swirl-Plane PIV in a Light-Duty Optical Diesel Engine with the Re-entrant Piston Bowl Geometry

2015-04-14
2015-01-1699
Flow field asymmetry can lead to an asymmetric mixture preparation in Diesel engines. To understand the evolution of this asymmetry, it is necessary to characterize the in-cylinder flow over the full compression stroke. Moreover, since bowl-in-piston cylinder geometries can substantially impact the in-cylinder flow, characterization of these flows requires the use of geometrically correct pistons. In this work, the flow has been visualized via a transparent piston top with a realistic bowl geometry, which causes severe experimental difficulties due to the spatial and temporal variation of the optical distortion. An advanced optical distortion correction method is described to allow reliable particle image velocimetry (PIV) measurements through the full compression stroke. Based on the ensemble-averaged velocity results, flow asymmetry characterized by the swirl center offset and the associated tilting of the vortex axis is quantified.
Technical Paper

Characterization of the Mixing of Fresh Charge with Combustion Residuals Using Laser Raman Scattering with Broadband Detection

1998-05-04
981428
Spontaneous Raman scattering with broadband signal collection is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (C3H8) in a spark-ignition engine operating at low load. Both cycle-averaged and single-shot, cycle-resolved measurements of the mixing between residual and fresh charge are made from the beginning of the intake stroke to TDC compression. The measurements are made at twelve locations simultaneously with sub-millimeter spatial precision, which is sufficient to resolve the characteristic scales of inhomogeneity in most cases. Analysis of the spatial covariance functions provides a measure of the noise contribution to the measured mole fractions and, in certain instances, allows the determination of whether the measured composition fluctuations are associated with spatial inhomogeneities or with cyclic variations in overall charge composition.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Technical Paper

Dynamics of Multiple-Injection Fuel Sprays in a Small-bore HSDI Diesel Engine

2000-03-06
2000-01-1256
An experimental study was conducted to characterize the dynamics and spray behavior of a wide range of minisac and Valve-Covered-Orifice (VCO) nozzles using a high-pressure diesel common-rail system. The measurements show that the resultant injection-rate is strongly dependent on common-rail pressure, nozzle hole diameter, and nozzle type. For split injection the dwell between injections strongly affects the second injection in regards to the needle lift profile and the injected fuel amount. The minisac nozzle can be used to achieve shorter pilot injections at lower common-rail pressures than the VCO nozzle. Penetration photographs of spray development in a high pressure, optical spray chamber were obtained and analyzed for each test condition. Spray symmetry and spray structure were found to depend significantly on the nozzle type.
Journal Article

Equivalence Ratio Distributions in a Light-Duty Diesel Engine Operating under Partially Premixed Conditions

2012-04-16
2012-01-0692
The performance of Partially Premixed Compression Ignition (PPCI) combustion relies heavily on the proper mixing between the injected fuel and the in-cylinder gas mixture. In fact, the mixture distribution has direct control over the engine-out emissions as well as the rate of heat release during combustion. The current study focuses on investigating the pre-combustion equivalence ratio distribution in a light-duty diesel engine operating at a low-load (3 bar IMEP), highly dilute (10% O₂), slightly boosted (P ⁿ = 1.5 bar) PPCI condition. A tracer-based planar laser-induced fluorescence (PLIF) technique was used to acquire two-dimensional equivalence ratio measurements in an optically accessible diesel engine that has a production-like combustion chamber geometry including a re-entrant piston bowl.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

In-Cylinder Gas Velocity Measurements Comparing Crankcase and Blower Scavenging in a Fired Two-Stroke Cycle Engine

1994-03-01
940401
The in-cylinder flow field of a Schnürle (loop) scavenged two-stroke engine has been examined under conditions simulating both blower and crankcase driven scavenging. Measurements of the radial component of velocity were obtained along the cylinder centerline during fired operation at delivery ratios of 0.4, 0.6, and 0.8. Both mean velocity profiles and root mean square velocity fluctuations near top center show a strong dependence on the scavenging method. Complementary in-cylinder pressure measurements indicate that combustion performance is better under blower driven scavenging for the engine geometry studied. IN THE PAST TEN YEARS the engine research and development community has demonstrated a renewed interest in two-stroke engine technology. Many manufacturers have new engine designs operating on test stands and in prototype vehicles being road tested.
Technical Paper

Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

2009-11-02
2009-01-2810
Laser induced fluorescence (LIF) imaging during the expansion stroke, exhaust gas emissions, and cylinder pressure measurements were used to investigate the influence on combustion and CO/UHC emissions of variations in squish height and fuel spray targeting on the piston. The engine was operated in a highly dilute, partially premixed, low-temperature combustion mode. A small squish height and spray targeting low on the piston gave the lowest exhaust emissions and most rapid heat release. The LIF data show that both the near-nozzle region and the squish volume are important sources of UHC emissions, while CO is dominated by the squish region and is more abundant near the piston top. Emissions from the squish volume originate primarily from overly lean mixture. At the 3 bar load investigated, CO and UHC levels in mixture leaving the bowl and ring-land crevice are low.
Technical Paper

Late-Cycle Turbulence Generation in Swirl-Supported, Direct-Injection Diesel Engines

2002-03-04
2002-01-0891
Cycle-resolved analysis of velocity data obtained in the re-entrant bowl of a fired high-;speed, direct-injection diesel engine, demonstrates an unambiguous, approximately 100% increase in late-cycle turbulence levels over the levels measured during motored operation. Model predictions of the flow field, obtained employing RNG k-ε turbulence modeling in KIVA-3V, do not capture this increased turbulence. A combined experimental and computational approach is taken to identify the source of this turbulence. The results indicate that the dominant source of the increased turbulence is associated with the formation of an unstable distribution of mean angular momentum, characterized by a negative radial gradient. The importance of this source of flow turbulence has not previously been recognized for engine flows. The enhanced late-cycle turbulence is found to be very sensitive to the flow swirl level.
Technical Paper

Measurement of Instantaneous Flamelet Surface Normals and the Burning Rate in a SI Engine

1999-10-25
1999-01-3543
A recently developed technique, crossed-plane imaging, is extended to measure instantaneous flamelet surface normals in a single-cylinder, optical SI engine. Two simultaneous, orthogonal acetone PLIF images are used to measure the instantaneous flamelet orientation in three dimensions. The images are also used to measure contours of constant mean reaction progress variable < c> and the mean flamelet crossing density. Statistics of the flamelet surface normal are presented in spherical coordinates in terms of a polar angle, f, and an azimuthal angle,q; the pole is aligned with the normal to a constant surface. The data are used to estimate marginal probability density functions (PDF's) in f and q. The estimated marginal PDF's are found to be well represented by the same functional forms applied previously to turbulent V-flames. The flamelet surface density and the mean fractional increase in flamelet surface area due to turbulence are also estimated.
Technical Paper

Numerical and Experimental Investigation of Turbulent Flows in a Diesel Engine

2006-10-16
2006-01-3436
This paper presents a study of the turbulence field in an optical diesel engine operated under motored conditions using both large eddy simulation (LES) and Particle Image Velocimetry (PIV). The study was performed in a laboratory optical diesel engine based on a recent production engine from VOLVO Car. PIV is used to study the flow field in the cylinder, particularly inside the piston bowl that is also optical accessible. LES is used to investigate in detail the structure of the turbulence, the vortex cores, and the temperature field in the entire engine, all within a single engine cycle. The LES results are compared with the PIV measurements in a 40 × 28 mm domain ranging from the nozzle tip to the cylinder wall. The LES grid consists of 1283 cells. The grid dynamically adjusts itself as the piston moves in the cylinder so that the engine cylinder, including the piston bowl, is described by the grid.
Technical Paper

On the Cyclic Variability and Sources of Unburned Hydrocarbon Emissions in Low Temperature Diesel Combustion Systems

2007-07-23
2007-01-1837
The cycle-to-cycle variability and potential sources of unburned hydrocarbon (UHC) emissions are examined in a single-cylinder, light-duty diesel test engine operating in low-temperature combustion regimes. A fast flame ionization detector (FID) was employed to examine both cycle-to-cycle variations in UHC emissions and intra-cycle emissions behavior. A standard suite of emissions measurements, including CO, CO2, NOx, and soot, was also obtained. Measurements were made spanning a broad range of intake O2 concentrations-to examine the UHC behavior of dilution-controlled combustion regimes-and spanning a broad range of injection timings-to clarify the behavior of increased UHC emissions in late-injection combustion regimes. Both low- and moderate-loads were investigated. The cycle-resolved UHC data showed that the coefficient of variation of single-cycle UHC did not increase with increases in UHC emissions as either O2 concentration or injection timing was varied.
Journal Article

Optical Investigation of UHC and CO Sources from Biodiesel Blends in a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-04-12
2010-01-0862
The influence of soy- and palm-based biofuels on the in-cylinder sources of unburned hydrocarbons (UHC) and carbon monoxide (CO) was investigated in an optically accessible research engine operating in a partially premixed, low-temperature combustion regime. The biofuels were blended with an emissions certification grade diesel fuel and the soy-based biofuel was also tested neat. Cylinder pressure and emissions of UHC, CO, soot, and NOx were obtained to characterize global fuel effects on combustion and emissions. Planar laser-induced fluorescence was used to capture the spatial distribution of fuel and partial oxidation products within the clearance and bowl volumes of the combustion chamber. In addition, late-cycle (30° and 50° aTDC) semi-quantitative CO distributions were measured above the piston within the clearance volume using a deep-UV LIF technique.
X