Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Computer Simulation Analysis of Safety Critical Maneuvers for Assessing Ground Vehicle Dynamic Stability

1993-03-01
930760
Ground vehicle dynamic stability, including spinout and rollover, is highly dependent on maneuvering conditions and the nonlinear force response characteristics of tires. Depending on vehicle configuration, unstable behavior requires high, sustained lateral acceleration, and some maneuver induced excitation of the roll and yaw mode dynamics. Dynamic instability in some vehicles can be induced by a steering reversal maneuver that involves sustained limit performance lateral acceleration. Using a validated vehicle dynamics simulation, analysis is presented to illustrate what constitutes a critical stability sensitive maneuver. Two example test cases are used to show that a critical stability sensitive maneuver must be more severe than a single lane change. Even reaching tire saturation limits during an aggressive single lane change does not give the sustained lateral acceleration required to provoke instability conditions.
Technical Paper

A Human Factors Simulation Investigation of Driver Route Diversion and Alternate Route Selection Using In-Vehicle Navigation Systems

1991-10-01
912731
This paper describes a human factors simulation study of the decision making behavior of drivers attempting to avoid nonrecurring congestion by diverting to alternate routes with the aid of in-vehicle navigation systems. This study is the first phase of a two part project in which the second phase will apply the driver behavior data to a simulation model analysis of traffic flow. The object of the driver behavior experiment was to compare the effect of various experimental navigation systems on driver route diversion and alternate route selection. The experimental navigation system configurations included three map based systems with varying amounts of situation information and a non map based route guidance system. The overall study results indicated that navigation system characteristics can have a significant effect on driver diversion behavior, with better systems allowing more anticipation of traffic congestion.
Technical Paper

Analysis of Potential Road/Terrain Characterization Rating Metrics

2004-10-26
2004-01-2640
The U.S. Army uses the root mean square and power spectral density of elevation to characterize road/terrain (off-road) roughness for durability. This paper describes research aimed toward improving these metrics. The focus is on taking previously developed metrics and applying them to mathematically generated terrains to determine how each metric discerns the relative roughness of the terrains from a vehicle durability perspective. Multiple terrains for each roughness level were evaluated to determine the variability for each terrain rating metric. One method currently under consideration is running a relatively simple, yet vehicle class specific, model over a given terrain and using predicted vehicle response(s) to classify or characterize the terrain.
Technical Paper

Computer Simulation Analysis of Light Vehicle Lateral/Directional Dynamic Stability

1999-03-01
1999-01-0124
Dynamic stability is influenced by vehicle and tire characteristics and operating conditions, including speed and control inputs. Under limit performance operating conditions, maneuvering can force a vehicle into oversteer and high sideslip. The high sideslip results in limit cornering conditions, which might proceed to spinout, or result in tip-up and rollover. Oversteer and spinout result from rear axle tire side force saturation. Tip-up and rollover occur when tire side forces are sufficient to induce lateral acceleration that will overcome the stabilizing moment of vehicle weight. With the use of computer simulation and generic vehicle designs, this paper explores the vehicle and tire characteristics and maneuvering conditions that lead to loss of directional control and potential tip-up and rollover.
Technical Paper

Field Testing and Computer Simulation Analysis of Ground Vehicle Dynamic Stability

1990-02-01
900127
This paper considers ground vehicle lateral/directional stability which is of primary concern in traffic safety. Lateral/directional dynamics involve yawing, rolling and lateral acceleration motions, and stability concerns include spinout and rollover. Lateral/directional dynamics are dominated by tire force response which depends on horizontal slip, camber angle and normal load. Vehicle limit maneuvering conditions can lead to tire force responses that result in vehicle spinout and rollover. This paper describes accident analysis, vehicle testing and computer simulation analysis designed to give insight into basic vehicle design variables that contribute to stability problems. Field test procedures and results for three vehicles are described. The field test results are used to validate a simulation model which is then analyzed under severe maneuvering conditions to shed light on dynamic stability issues.
Technical Paper

Further Analysis of Potential Road/Terrain Characterization Rating Metrics

2005-11-01
2005-01-3562
The U.S. Army uses the root mean square and power spectral density of elevation to characterize road/terrain (off-road) roughness for durability. This paper describes research aimed toward improving these metrics. The focus is on taking previously developed metrics and applying them to mathematically generated terrains to determine how each metric discerns the relative roughness of the terrains from a vehicle durability perspective. Multiple terrains for each roughness level were evaluated to determine the variability for each terrain rating metric. One method currently under consideration is running a relatively simple, yet vehicle class specific, model over a given terrain and using predicted vehicle response(s) to classify or characterize the terrain.
Technical Paper

Steady State and Transient Analysis of Ground Vehicle Handling

1987-02-23
870495
This paper presents simple linear and non-linear dynamic models and numerical procedures designed to permit efficient vehicle dynamics analysis on microcomputers. Vehicle dynamics are dominated by tire forces and their precursor input variables, and a few inertial and suspension properties. The steady state and dynamic models discussed herein include a comprehensive, unlimited maneuver tire model with relatively simple vehicle suspension kinematics and inertial dynamics to cover the full vehicle maneuvering range from straight running to combined limit cornering and braking or acceleration. An attempt was made to minimize the required tire and vehicle model parameter set and to include easily obtainable parameters. The computer analysis procedures include: A steady state model for determining perturbation side force coefficients, and a stability factor and maneuvering time constant for lateral/directional control.
Technical Paper

The Relative Sensitivity of Size and Operational Conditions on Basic Tire Maneuvering Properties

2002-03-04
2002-01-1182
Basic performance properties of tires significantly influence the lateral/directional (steering) stability and handling of highway vehicles. These properties include cornering stiffness and peak and slide coefficients of friction. This paper considers some detailed tire machine measurements of lateral tire performance. A large database of tire properties for a wide range of highway vehicles is also analyzed. A regression analysis approach is used to define the sensitivity of various size and operational (speed, pressure and load) characteristics on tire behavior. The paper discusses the manner in which these properties vary with tire size and operational conditions, and the effect of the properties on vehicle stability and handling.
X