Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Conversion of a Diesel Engine for Gaseous Fuel Operation at High Compression Ratio

A Waukesha VR 220 naturally aspirated Diesel Engine has been modified to operate with a high compression ratio fast-burn spark-ignition combustion system. Since the application of greatest interest is for Combined Heat and Power (CHP), the majority of data have been obtained with the engine operating at full throttle and 1500 rpm. The philosophy of the open chamber combustion system design is described, and this includes a discussion on the selection of the compression ratio. Results are presented for the energy balance and the emissions, for a wide range of air fuel ratios. The experiments have been conducted with natural gas and natural gas/carbon dioxide mixtures (to simulate bio-gas). Comparisons are made with the baseline engine performance data, some of which has been published earlier(1)*.
Technical Paper

Cycle-by-Cycle Variations in Exhaust Temperatures Using Thermocouple Compensation Techniques

Exhaust gas temperatures in a 1.4 L, sparked ignition engine have been measured using fine wire thermocouples at different loads and speeds. However the thermocouples are not fast enough to resolve the rapid change in exhaust temperature. This paper discusses a new thermocouple compensation technique to resolve the cycle-by-cycle variations in exhaust temperature by segmentation. Simulation results show that the technique can find the lower time constants during blowdown, reducing the bias from 28 to 4%. Several estimators and model structures have been compared. The best one is the difference equation-least squares technique, which has the combined error between -4.4 to 7.6% at 60 dB signal-to-noise ratio. The compensated temperatures have been compared against combustion parameters on a cycle-by-cycle basis. The results show that the cycle-by-cycle variations of the exhaust temperatures and combustion are correlated.
Technical Paper

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Ignition System Measurement Techniques and Correlations for Breakdown and Arc Voltages and Currents

The first part of the paper is a brief review of the techniques needed for measuring the voltage and current during the ignition process. These techniques have been used in test rigs and an engine to gain insights into the breakdown and subsequent discharge development. New correlations are presented for breakdown voltage as functions of spark plug gap, gas composition, temperature and pressure. The discharge voltage is affected by the flow, so an elevated pressure flow rig was used to look at the effect of flow and pressure on the discharge voltage history, with different stored energies in the ignition coil. This study led to a model for the discharge voltage history, from which it was possible to deduce the flow velocity through the spark plug gap. Finally, these techniques were applied to a single cylinder, 4-valve, pent-roof combustion chamber SI engine, for determining the cycle-by-cycle variations in velocity through the spark plug at the time of ignition.
Technical Paper

In-Cylinder Temperature Estimation from an Optical Spray-Guided DISI Engine with Color-Ratio Pyrometry (CRP)

Color-ratio pyrometry (CRP) is a technique for estimating the temperature and loading of soot, based on its thermal emission spectrum. This technique is contrasted with conventional two-color pyrometry which requires absolute measurements of the radiation intensity, either at two specific wavelengths or ranges of wavelengths. CRP uses two ratios, obtained by measuring the radiation intensity for three wavelengths or wavelength bands. CRP has been implemented here by using a digital CCD camera, and full details of the calibration are reported. Because of uncertainties in the emissivity of reference sources (such as tungsten ribbon lamps, in which the emissivity depends on temperature and wavelength), then a spectroscopic calibration of the CCD camera has been used. Use of a CCD camera is not straightforward because of internal digital signal processing (DSP), so full details are given of the calibration and technique implementation.

Introduction to Internal Combustion Engines, Fourth Edition

Now in its fourth edition, this book remains the indispensable guide to internal combustion engines. It serves as valuable reference for both students and professional engineers needing a practical overview of the subject. Thoroughly updated, clear, comprehensive and well-illustrated, with a wealth of worked examples and problems, its combination of theory and applied practice is sure to help you understand internal combustion engines, from thermodynamics and combustion to fluid mechanics and materials science. Co-published by SAE International and Macmillan Press. Topics include: • Thermodynamic Principles • Combustion and Fuels • Spark Ignition Engines • Induction and Exhaust Processes • Turbocharging • Experimental Facilities
Technical Paper

Particulate and Hydrocarbon Emissions from a Spray Guided Direct Injection Spark Ignition Engine with Oxygenate Fuel Blends

The blending of oxygenated compounds with gasoline is projected to increase because oxygenate fuels can be produced renewably, and because their high octane rating allows them to be used in substitution of the aromatic fraction in gasoline. Blending oxygenates with gasoline changes the fuels' properties and can have a profound affect on the distillation curve, both of which are known to affect engine-out emissions. In this work, the effect of blending methanol and ethanol with gasoline on unburned hydrocarbon and particulate emissions is experimentally determined in a spray guided direct injection engine. Particulate number concentration and size distribution were measured using a Cambustion DMS500. These data are presented for different air fuel ratios, loads, ignition timings and injection timings. In addition, the ASTM D86 distillation curve was modeled using the binary activity coefficients method for the fuel blends used in the experiments.
Technical Paper

The Effect of Combustion Knock on the Instantaneous Heat Flux in Spark Ignition Engines

Knocking combustion places a major limit on the performance and efficiency of spark ignition engines. Spontaneous ignition of the unburned air-fuel mixture ahead of the flame front leads to a rapid release of energy, which produces pressure waves that cause the engine structure to vibrate at its natural frequencies and produce an audible ‘pinging’ sound. In extreme cases of knock, increased temperatures and pressures in the cylinder can cause severe engine damage. Damage is thought to be caused by thermal strain effects that are directly related to the heat flux. Since it will be the maximum values that are potentially the most damaging, then the heat flux needs to be measured on a cycle-by-cycle basis. Previous work has correlated heat flux with the pressure fluctuations on an average basis, but the work here shows a correlation on a cycle-by-cycle basis. The in-cylinder pressure and surface temperature were measured using a pressure transducer and eroding-type thermocouple.
Technical Paper

Variable Valve Actuation Mechanisms and the Potential for their Application

The numerous variable valve actuation mechanisms for poppet valves need to be classified, if sensible comparisons are to be made, and one possible taxonomy is presented here. Not all the mechanisms proposed have been tested, but where they have it is usually with gasoline engines. It is well established that controlling the valve events can raise and flatten the torque curve. However, it is difficult to quantify and compare the gains in torque and consequential reduction in fuel consumption, as the results depend very much on the starting point. This is also the case when variable valve actuation is used to reduce engine emissions. Fortunately it is quite easy to realise suitable variable valve timing systems for controlling the valve overlap, and the point of inlet valve closure. The other main application to gasoline engines, is in obtaining load control without throttling.