Refine Your Search




Search Results

Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Journal Article

A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions

One in-cylinder strategy for reducing soot emissions from diesel engines while maintaining fuel efficiency is the use of close-coupled post injections, which are small fuel injections that follow the main fuel injection after a short delay. While the in-cylinder mechanisms of diesel combustion with single injections have been studied extensively and are relatively well understood, the in-cylinder mechanisms affecting the performance and efficacy of post injections have not been clearly established. Here, experiments from a single-cylinder heavy-duty optical research engine incorporating close- coupled post injections are modeled with three dimensional (3D) computational fluid dynamics (CFD) simulations. The overall goal is to complement experimental findings with CFD results to gain more insight into the relationship between post-injections and soot. This paper documents the first stage of CFD results for simulating and analyzing the experimental conditions.
Technical Paper

A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations

A comprehensive biodiesel combustion model is presented for use in multi-dimensional engine simulations. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. Previously, a detailed mechanism for methyl decanoate and methyl-9-decenoate was reduced from 3299 species to 85 species to represent the components of biodiesel fuel. In this work, a second reduction was performed to further reduce the mechanism to 69 species. Steady and unsteady spray simulations confirmed that the model adequately reproduced liquid penetration observed in biodiesel spray experiments. Additionally, the new model was able to capture expected fuel composition effects with low-volatility components and fuel blend sprays penetrating further.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Study of Diesel Cold Starting using both Cycle Analysis and Multidimensional Calculations

The physical in-cylinder processes and ignition during cold starting have been studied using computational models, with particular attention to the influences of blowby, heat transfer during the compression stroke, spray development, vaporization and fuel/air mixture formation and ignition. Two different modeling approaches were used. A thermodynamic zero dimensional cycle analysis program in which the fuel injection effects were not modeled, was used to determine overall and gas exchange effects. The three-dimensional KIVA-II code was used to determine details of the closed cycle events, with modified atomization, blowby and spray/wall impingement models, and a simplified model for ignition. The calculations were used to obtain an understanding of the cold starting process and to identify practical methods for improving cold starting of direct injection diesel engines.
Technical Paper

An Evaluation of Common Rail, Hydraulically Intensified Diesel Fuel Injection System Concepts and Rate Shapes

Hydraulically intensified medium pressure common rail (MPCR) electronic fuel injection systems are an attractive concept for heavy-duty diesel engine applications. They offer excellent packaging flexibility and thorough engine management system integration. Two different concepts were evaluated in this study. They are different in how the pressure generation and injection events are related. One used a direct principle, where the high-pressure generation and injection events occur simultaneously producing a near square injection rate profile. Another concept was based on an indirect principle, where potential energy (pressure) is first stored inside a hydraulic accumulator, and then released during injection, as a subsequent event. A falling rate shape is typically produced in this case. A unit pump, where the hydraulic intensifier is separated from the injector by a high-pressure line, and a unit injector design are considered for both concepts.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

This study investigates the potential of controlling premixed charge compression ignition (PCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle, direct-injection of diesel fuel was used for combustion phasing control at a medium engine load of 9 bar net IMEP and was also found to be effective to prevent excessive rates of pressure rise. Parameters used in the experiments were guided from the KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism including injection timings, fuel percentages, and intake valve closing (IVC) timings for dual-fuel PCCI combustion. The engine experiments were conducted with a conventional common rail injector (i.e., wide angle and large nozzle hole) and demonstrated control and versatility of dual-fuel PCCI combustion with the proper fuel blend, SOI and IVC timings.
Technical Paper

An Experimental Investigation of Partially Premixed Combustion Strategies Using Multiple Injections in a Heavy-Duty Diesel Engine

Optimizations were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine for NOx, PM and BSFC reductions. The engine was equipped with a Caterpillar 300B HEUI fuel injection system capable of up to four injections with timings from 90 BTDC to 90 ATDC. The engine was operated at a medium load (57%), high speed (1737 rev/min) operation point. A micro-genetic algorithm was utilized to optimize a hybrid, double-injection strategy, which incorporated an early, premixed pilot injection with a late main injection. The fuel injection parameters, intake boost pressure, and EGR were considered in the optimization. The optimization produced a parameter set that met the 2007 and 2010 PM emissions mandate of 0.0134 g/kW-hr, and was within the 1.5x not to exceed NOx + HC mandate of 2.694 g/kW-hr. Following the optimization exercise, further parametric interaction studies were performed to reveal the underlying interactions and phenomena.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Characteristics of Vaporizing Continuous Multi-Component Fuel Sprays in a Port Fuel Injection Gasoline Engine

Vaporization models for continuous multi-component liquid sprays and liquid wall films are presented using a continuous thermodynamics formulation. The models were implemented in the KIVA3V-Release 2.0 code. The models are first applied to clarify the characteristics of vaporizing continuous multi-component liquid wall films and liquid drops, and then applied to numerically analyze a practical continuous multi-component fuel - gasoline behavior in a 4-valve port fuel injection (PFI) gasoline engine under warm conditions. Corresponding computations with single-component fuels are also performed and presented for comparison purposes. As compared to the results of its single-component counterpart, the vaporizing continuous multi-component fuel drop displays a larger vaporization rate initially and a smaller vaporization rate as it becomes more and more dominated by heavy species.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Technical Paper

Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images

Fuel spray atomization and breakup processes within a direct-injection spark-ignition (DISI) engine and outside the engine were modeled using a modified KIVA-3V code with improved spray models. The structures of the predicted sprays were qualitatively compared with planar images. The considered sprays were created by a prototype pressure-swirl injector and the planar images were obtained by laser sheet imaging in an optical DISI engine. In the out-of-engine case, the spray was injected into atmospheric air, and was modeled in a two dimensional bomb. In the engine case, the injection started from 270° ATDC, and full 3-D computations in the same engine were performed. In both cases, two liquid injection pressure conditions were applied, that is, 3.40 MPa and 6.12 MPa. The model gives good prediction of the tip penetration, and external spray shape, but the internal structure prediction has relatively lower accuracy, especially near the spray axis.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
Technical Paper

Development of Novel Direct-injection Diesel Engine Combustion Chamber Designs Using Computational Fluid Dynamics

A, three-dimensional CFD code, based on the KIVA code, is used to explore alternatives to conventional DI diesel engine designs for reducing NOx and soot emissions without sacrificing engine performance. The effects of combustion chamber design and fuel spray orientation are investigated using a new proposed GAMMA engine concept, and two new multiple injector combustion system (MICS) designs which utilize multiple injectors to increase gas motion and enhance fuel/air mixing in the combustion chamber. From these computational studies, it is found that both soot and nitrous oxide emissions can be significantly reduced without the need for more conventional emission control strategies such as EGR or ultra high injection pressure. The results suggest that CFD models can be a useful tool not only for understanding combustion and emissions production, but also for investigating new design concepts.
Technical Paper

Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling

The recently developed KIVA-GA computer code was used in the current study to optimize the combustion chamber geometry of a heavy -duty diesel truck engine and a high-speed direct-injection (HSDI) small-bore diesel engine. KIVA-GA performs engine simulations within the framework of a genetic algorithm (GA) global optimization code. Design fitness was determined using a modified version of the KIVA-3V code, which calculates the spray, combustion, and emissions formation processes. The measure of design fitness includes NOx, unburned HC, and soot emissions, as well as fuel consumption. The simultaneous minimization of these factors was the ultimate goal. The KIVA-GA methodology was used to optimize the engine performance using nine input variables simultaneously. Three chamber geometry related variables were used along with six other variables, which were thought to have significant interaction with the chamber geometry.
Journal Article

Diesel Engine Size Scaling at Medium Load without EGR

Several diffusion combustion scaling models were experimentally tested in two geometrically similar single-cylinder diesel engines with a bore diameter ratio of 1.7. Assuming that the engines have the same in-cylinder thermodynamic conditions and equivalence ratio, the combustion models primarily change the fuel injection pressure and engine speed in order to attain similar performance and emissions. The models tested include an extended scaling model, which scales diffusion flame lift-off length and jet spray penetration; a simple scaling model, which only scales spray penetration at equal mean piston speed; and a same speed scaling model, which holds crankshaft rotational velocity constant while also scaling spray penetration. Successfully scaling diffusion combustion proved difficult to accomplish because of apparent differences that remained in the fuel-air mixing and heat transfer processes.
Technical Paper

Effect of Drop Breakup on Fuel Sprays

Recently developed computer models are being applied to calculate complex interactions between sprays and gas motions. The three- dimensional KIVA code was modified to address drop breakup and was used to study fuel sprays. The results show that drop breakup influences spray penetration, vaporization and mixing in high pressure sprays. The spray drop size is the outcome of a competition between drop breakup and drop coalescence phenomena, and the atomization details at the injector are lost during these size rearrangements. Drop breakup dominates in hollow-cone sprays because coalescence is minimized by the expanding spray geometry. The results imply that it may be possible to use a simple injector and still control spray drop size and vaporization if the flow details are modified so as to enhance drop breakup and coalescence.