Refine Your Search


Search Results

Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Technical Paper

Assessment of Wall Heat Transfer Models for Premixed-Charge Engine Combustion Computations

Two-dimensional computations of premixed-charge engine combustion were made using the KIVA-II code. The purpose of the study was to assess the influence of heat transfer and turbulence model boundary conditions on engine combustion predictions. Combustion was modeled using a laminar- and turbulent-characteristic-time model. Flow through the piston-cylinder-ring crevice was accounted for using a phenomenological crevice-flow model. The predictions were compared to existing cylinder pressure and wall heat transfer experimental data under motoring and fired conditions, at two engine speeds. Two different wall heat transfer model formulations were considered. The first is the standard wall function method. The second is based on solutions to the one-dimensional unsteady energy equation, formulated such that the standard wall function method is recovered in the quasi-steady limit. Turbulence was modeled using the standard k-ε turbulence model equations.
Technical Paper

Comparison of Computed Spray in a Direct-Injection Spark-Ignited Engine with Planar Images

Fuel spray atomization and breakup processes within a direct-injection spark-ignition (DISI) engine and outside the engine were modeled using a modified KIVA-3V code with improved spray models. The structures of the predicted sprays were qualitatively compared with planar images. The considered sprays were created by a prototype pressure-swirl injector and the planar images were obtained by laser sheet imaging in an optical DISI engine. In the out-of-engine case, the spray was injected into atmospheric air, and was modeled in a two dimensional bomb. In the engine case, the injection started from 270° ATDC, and full 3-D computations in the same engine were performed. In both cases, two liquid injection pressure conditions were applied, that is, 3.40 MPa and 6.12 MPa. The model gives good prediction of the tip penetration, and external spray shape, but the internal structure prediction has relatively lower accuracy, especially near the spray axis.
Technical Paper

Computation of Premixed-Charge Combustion in Pancake and Pent-Roof Engines

Multidimensional computations were made of spark-ignited premixed-charge combustion in a pancake-combustion-chamber engine with a centrally located spark plug and in two pent-roof-chamber engines, one with a central spark plug and the other with dual lateral spark plugs. A global combustion submodel was used that accounts for laminar kinetics and turbulent mixing effects. The predictions were compared with available measurements in the pancake-chamber engine over a range of loads, speeds, and equivalence ratios. In all cases the computed and measured cylinder pressures agreed well in trends and magnitudes (within 8%) for the entire duration of combustion. Fair agreements were also obtained between predicted and measured values of wall heat flux and emission index of nitric oxide. In the pent-roof-chamber engines the predicted maximum cylinder pressures also agreed well with measurements (within 12%) in cases with MBT (Minimum spark advance for Best Torque) or advanced spark timing.
Technical Paper

Development of an Ignition and Combustion Model for Spark-Ignition Engines

A new ignition and combustion model has been developed and tested for use in premixed spark-ignition engines. The ignition model is referred to as the Discrete Particle Ignition Kernel (DPIK) model, and it uses Lagrangian markers to track the flame-front growth. The model includes the effects of electrode heat transfer on the early flame kernel growth process, and it is used in conjunction with a characteristic-time-scale combustion model once the ignition kernel has grown to a size where the effects of turbulence on the flame must be considered. A new term which accounts for the effect of air-fuel ratio, was added to the combustion model for modeling combustion in very lean and very rich mixtures. The flame kernel size predicted by the DPIK model was compared with measurements of Maly and Vogel. Furthermore, predictions of the electrode heat transfer were compared with data of Kravchik and Heywood. In both comparisons the model predictions were in good agreement with the experiments.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine

Multidimensional modeling is used to study air-fuel mixing in a direct-injection spark-ignition engine. Emphasis is placed on the effects of the start of fuel injection on gas/spray interactions, wall wetting, fuel vaporization rate and air-fuel ratio distributions in this paper. It was found that the in-cylinder gas/spray interactions vary with fuel injection timing which directly impacts spray characteristics such as tip penetration and spray/wall impingement and air-fuel mixing. It was also found that, compared with a non-spray case, the mixture temperature at the end of the compression stroke decreases substantially in spray cases due to in-cylinder fuel vaporization. The computed trapped-mass and total heat-gain from the cylinder walls during the induction and compression processes were also shown to be increased in spray cases.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Technical Paper

High-Pressure Spray and Combustion Modeling Using Continuous Thermodynamics for Diesel Fuels

Practical diesel fuel sprays under high-pressure conditions were investigated by using multidimensional modeling combined with continuous thermodynamics and high-pressure multicomponent fuel vaporization models. Transport equations, which are general for the moments of the distributions and independent of the distribution function, are derived for the continuous system consisting of the both gas and liquid phases. A general treatment of the vapor-liquid equilibrium (VLE) is conducted, and the Peng-Robinson Equation of State (EOS) is used to find the surface equilibrium composition. Relations for the properties of the continuous species are formulated. The KH-RT model is used for spray breakup prediction. The fuel droplets are assumed to be well mixed with uniform temperature and composition within each droplet. The turbulent flow field is calculated using the RNG k -ε turbulence model.
Technical Paper

Improvements in 3-D Modeling of Diesel Engine Intake Flow and Combustion

A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation and the intake flow process. Improved and/or new submodels which have been completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops.
Journal Article

Improvements to Combustion Models for Modeling Spark-Ignition Engines Using the G-equation and Detailed Chemical Kinetics

Improvements to combustion models for modeling spark ignition engines using the G-equation flame propagation model and detailed chemical kinetics have been performed. The improvements include revision of a PRF chemistry mechanism, precise calculation of “primary heat release” based on the sub-grid scale unburned/burnt volumes of flame-containing cells, modeling flame front quenching in highly stratified mixtures, introduction of a Damkohler model for assessing the combustion regime of flame-containing cells, and a better method of modeling the effects of the local residual value on the burning velocity. The validation of the revised PRF mechanism shows that the calculated ignition delay matches shock tube data very well. The improvements to the “primary heat release” model based on the cell unburned/burnt volumes more precisely consider the chemical kinetics heat release in unburned regions, and thus are thought to be physically reasonable.
Technical Paper

Intake Flow Simulation and Comparison with PTV Measurements

Intake flow simulations were carried out for a prototype DISI engine using the standard k-ε model and the RNG k-ε model. The results were compared with PTV (transient water analog) measurements. The study was focused on low load operations with engine speed at 400 rev/min. Two cases were studied, a single intake case in which one intake port was blocked and a dual intake port case. In the computations, the results show that the standard k-ε model tends to produce higher turbulence levels when turbulence is generated and decays faster when turbulence dissipates. Different turbulence models predict almost the same flow structures. However, the effects of the turbulence model on the predicted tumble and swirl ratios are significant. The TKE distributions at BDC predicted by the two models are also different. The standard k-ε model seems to be more diffusive. Good agreements with PTV data were obtained in the single valve case with the RNG k-ε model.
Technical Paper

Late-Cycle Turbulence Generation in Swirl-Supported, Direct-Injection Diesel Engines

Cycle-resolved analysis of velocity data obtained in the re-entrant bowl of a fired high-;speed, direct-injection diesel engine, demonstrates an unambiguous, approximately 100% increase in late-cycle turbulence levels over the levels measured during motored operation. Model predictions of the flow field, obtained employing RNG k-ε turbulence modeling in KIVA-3V, do not capture this increased turbulence. A combined experimental and computational approach is taken to identify the source of this turbulence. The results indicate that the dominant source of the increased turbulence is associated with the formation of an unstable distribution of mean angular momentum, characterized by a negative radial gradient. The importance of this source of flow turbulence has not previously been recognized for engine flows. The enhanced late-cycle turbulence is found to be very sensitive to the flow swirl level.
Technical Paper

Measured and Predicted Soot Particle Emissions from Natural Gas Engines

Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
Technical Paper

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data.
Technical Paper

Modeling Combustion in Compression Ignition Homogeneous Charge Engines

The combustion mechanism in a Compression Ignition Homogeneous Charge (CIHC) engine was studied. Previous experiments done on a four-stroke CIHC engine were modeled using the KIVA-II code with modifications to the combustion, heat transfer, and crevice flow submodels. A laminar and turbulence characteristic time combustion model that has been used for spark-ignited engine studies was extended to allow predictions of ignition. The rate of conversion from one chemical species to another is modeled using a characteristic time which is the sum of a laminar (high temperature) chemistry time, an ignition (low temperature) chemistry time, and a turbulence mixing time. The ignition characteristic time was modeled using data from elementary initiation reactions and has the Arrhenius form. It was found to be possible to match all engine test cases reasonably well with one set of combustion model constants.
Technical Paper

Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine

Fuel preparation and stratified combustion were studied for a conceptual gasoline Direct-Injection Spark-Ignition (GDI or DISI) engine by computer simulations. The primary interest was on the effects of different injector orientations and the effects of tumble ratio for late injection cases at a partial load operating condition. A modified KIVA-3V code that includes improved spray breakup and wall impingement and combustion models was used. A new ignition kernel model, called DPIK, was developed to describe the early flame growth process. The model uses Lagrangian marker particles to describe the flame positions. The computational results reveal that spray wall impingement is important and the fuel distribution is controlled by the spray momentum and the combustion chamber shape. The injector orientation significantly influences the fuel stratification pattern, which results in different combustion characteristics.
Technical Paper

Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method

An improved discrete particle ignition kernel (DPIK) model and the G-equation combustion model have been developed and implemented in KIVA-3V. In the ignition model, the spark ignition kernel growth is tracked by Lagrangian markers and the spark discharge energy and flow turbulence effects on the ignition kernel growth are considered. The predicted ignition kernel size was compared with the available measurements and good agreement was obtained. Once the ignition kernel grows to a size where the turbulent flame is fully developed, the level set method (G-equation) is used to track the mean turbulent flame propagation. It is shown that, by ignoring the detailed turbulent flame brush structure, fine numerical resolution is not needed, thus making the models suitable for use in multidimensional modeling of SI engine combustion.