Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Technical Paper

A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load

2010-04-12
2010-01-1263
The objective of this investigation is to optimize a light-duty diesel engine in order to minimize soot, NOx, carbon monoxide (CO), unburned hydrocarbon (UHC) emissions and peak pressure rise rate (PPRR) while improving fuel economy in a low oxygen environment. Variables considered are the injection timings, fractional amount of fuel per injection, half included spray angle, swirl, and stepped-bowl piston geometry. The KIVA-CHEMKIN code, a multi-dimensional computational fluid dynamics (CFD) program with detailed chemistry is used and is coupled to a multi-objective genetic algorithm (MOGA) along with an automated grid generator. The stepped-piston bowl allows more options for spray targeting and improved charge preparation. Results show that optimal combinations of the above variables exist to simultaneously reduce emissions and fuel consumption. Details of the spray targeting were found to have a major impact on the combustion process.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Study of Diesel Cold Starting using both Cycle Analysis and Multidimensional Calculations

1991-02-01
910180
The physical in-cylinder processes and ignition during cold starting have been studied using computational models, with particular attention to the influences of blowby, heat transfer during the compression stroke, spray development, vaporization and fuel/air mixture formation and ignition. Two different modeling approaches were used. A thermodynamic zero dimensional cycle analysis program in which the fuel injection effects were not modeled, was used to determine overall and gas exchange effects. The three-dimensional KIVA-II code was used to determine details of the closed cycle events, with modified atomization, blowby and spray/wall impingement models, and a simplified model for ignition. The calculations were used to obtain an understanding of the cold starting process and to identify practical methods for improving cold starting of direct injection diesel engines.
Technical Paper

A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion

2006-04-03
2006-01-0026
Experiments were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine at high speed (1737 rev/min) and loads up to 60% of full load for fully Premixed Charge Compression Ignition (PCCI) combustion. The engine was equipped with a high pressure (150 MPa) Caterpillar 300B HEUI fuel injection system. The engine was run with EGR levels up to 75% and with equivalence ratios up to 0.95. These experiments resulted in compliance of NOx and PM emissions to 2010 emissions mandates levels up to the tested load. The set of experiments also demonstrated the importance of cylinder charge preparation by way of optimized start-of-combustion timing for sufficient in-cylinder mixing. It was found that increased EGR rates, even with the correspondingly increased equivalence ratios, increase mixing time and substantially decrease PM emissions.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

An Analysis on Time Scale Separation for Engine Simulations with Detailed Chemistry

2011-09-11
2011-24-0028
The simulation of combustion chemistry in internal combustion engines is challenging due to the need to include detailed reaction mechanisms to describe the engine physics. Computational times needed for coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed computer systems are exploited. For these reasons the present paper proposes a time scale separation approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The time scale separation is achieved through the estimation of a characteristic time for each of the species and the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. This allows explicit integration of the system to be carried out, and the step size is governed by tolerance requirements.
Journal Article

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

2010-04-12
2010-01-0864
This study investigates the potential of controlling premixed charge compression ignition (PCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle, direct-injection of diesel fuel was used for combustion phasing control at a medium engine load of 9 bar net IMEP and was also found to be effective to prevent excessive rates of pressure rise. Parameters used in the experiments were guided from the KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism including injection timings, fuel percentages, and intake valve closing (IVC) timings for dual-fuel PCCI combustion. The engine experiments were conducted with a conventional common rail injector (i.e., wide angle and large nozzle hole) and demonstrated control and versatility of dual-fuel PCCI combustion with the proper fuel blend, SOI and IVC timings.
Technical Paper

Assessment of Diesel Engine Size-Scaling Relationships

2007-04-16
2007-01-0127
Engine development is both time consuming and economically straining. Therefore, efforts are being made to optimize the research and development process for new engine technologies. The ability to apply information gained by studying an engine of one size/application to an engine of a completely different size/application would offer savings in both time and money in engine development. In this work, a computational study of diesel engine size-scaling relationships was performed to explore engine scaling parameters and the fundamental engine operating components that should be included in valid scaling arguments. Two scaling arguments were derived and tested: a simple, equal spray penetration scaling model and an extended, equal lift-off length scaling model. The simple scaling model is based on an equation for the conservation of mass and an equation for spray tip penetration developed by Hiroyasu et al. [1].
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

2011-04-12
2011-01-0829
RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Technical Paper

Assessment of Wall Heat Transfer Models for Premixed-Charge Engine Combustion Computations

1991-02-01
910267
Two-dimensional computations of premixed-charge engine combustion were made using the KIVA-II code. The purpose of the study was to assess the influence of heat transfer and turbulence model boundary conditions on engine combustion predictions. Combustion was modeled using a laminar- and turbulent-characteristic-time model. Flow through the piston-cylinder-ring crevice was accounted for using a phenomenological crevice-flow model. The predictions were compared to existing cylinder pressure and wall heat transfer experimental data under motoring and fired conditions, at two engine speeds. Two different wall heat transfer model formulations were considered. The first is the standard wall function method. The second is based on solutions to the one-dimensional unsteady energy equation, formulated such that the standard wall function method is recovered in the quasi-steady limit. Turbulence was modeled using the standard k-ε turbulence model equations.
Technical Paper

Development of an Ignition and Combustion Model for Spark-Ignition Engines

2000-10-16
2000-01-2809
A new ignition and combustion model has been developed and tested for use in premixed spark-ignition engines. The ignition model is referred to as the Discrete Particle Ignition Kernel (DPIK) model, and it uses Lagrangian markers to track the flame-front growth. The model includes the effects of electrode heat transfer on the early flame kernel growth process, and it is used in conjunction with a characteristic-time-scale combustion model once the ignition kernel has grown to a size where the effects of turbulence on the flame must be considered. A new term which accounts for the effect of air-fuel ratio, was added to the combustion model for modeling combustion in very lean and very rich mixtures. The flame kernel size predicted by the DPIK model was compared with measurements of Maly and Vogel. Furthermore, predictions of the electrode heat transfer were compared with data of Kravchik and Heywood. In both comparisons the model predictions were in good agreement with the experiments.
Journal Article

Diesel Engine Size Scaling at Medium Load without EGR

2011-04-12
2011-01-1384
Several diffusion combustion scaling models were experimentally tested in two geometrically similar single-cylinder diesel engines with a bore diameter ratio of 1.7. Assuming that the engines have the same in-cylinder thermodynamic conditions and equivalence ratio, the combustion models primarily change the fuel injection pressure and engine speed in order to attain similar performance and emissions. The models tested include an extended scaling model, which scales diffusion flame lift-off length and jet spray penetration; a simple scaling model, which only scales spray penetration at equal mean piston speed; and a same speed scaling model, which holds crankshaft rotational velocity constant while also scaling spray penetration. Successfully scaling diffusion combustion proved difficult to accomplish because of apparent differences that remained in the fuel-air mixing and heat transfer processes.
Journal Article

Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel

2013-04-08
2013-01-0264
A single-cylinder light-duty diesel engine was used to investigate dual fuel reactivity controlled compression ignition (RCCI) operated with two different fuel combinations: gasoline/diesel fuel and methanol/diesel fuel. The engine was operated over a range of conditions, from 1500 to 2300 rpm and 3.5 to 17 bar gross IMEP. Using the stock re-entrant piston bowl geometry, both fuel combinations were able to achieve low NOx and PM emissions with a peak gross indicated efficiency of 48%. However, at light load conditions both gasoline and methanol yielded poorer combustion efficiencies. Previous studies have shown that the high-levels of piston induced mixing that are created by the stock piston are not required, and in fact are detrimental due to increased heat transfer losses, for premixed combustion. Thus a modified piston featuring a shallow, flat piston bowl with nearly no squish land was also investigated.
Journal Article

Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels

2008-04-14
2008-01-1379
A computational study using multi-dimensional CFD modeling was performed to investigate the effects of physical properties on diesel engine combustion characteristics with bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. The sensitivity of the computational results to individual physical properties is also investigated, and the results provide information about the desirable characteristics of the blended fuels. The properties considered in the study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions.
Technical Paper

Effects of Initial Conditions in Multidimensional Combustion Simulations of HSDI Diesel Engines

1999-03-01
1999-01-1180
The effects of numerical methodology in defining the initial conditions and simulating the compression stroke in D.I. diesel engine CFD computations are studied. Lumped and pointwise approaches were adopted in assigning the initial conditions at IVC. The lumped approach was coupled with a two-dimensional calculation of the compression stroke. The pointwise methodology was based on the results of an unsteady calculation of the intake stroke performed by using the STAR-CD code in the realistic engine and port geometry. Full engine and 60 deg. sector meshes were used in the compression stroke calculations in order to check the accuracy of the commonly applied axi-symmetric fluid dynamics assumption. Analysis of the evolution of the main fluid dynamics parameters revealed that local conditions at the time of injection strongly depend on the numerical procedure adopted.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on D.I. Diesel Emissions and Performance

1995-02-01
950604
An emissions and performance study was performed to show the effects of injection pressure, nozzle hole inlet condition (sharp and rounded edge) and nozzle included spray angle on particulate, NOx, and BSFC. The tests were conducted on a fully instrumented single-cylinder version of the Caterpillar 3406 heavy duty engine at 75% and 25% load at 1600 RPM. The fuel system consisted of an electronically controlled, hydraulically actuated, unit injector capable of injection pressures up to 160 MPa. Particulate versus NOx trade-off curves were generated for each case by varying the injection timing. The 75% load results showed the expected decrease in particulate and flattening of the trade-off curve with increased injection pressure. However, in going from 90 to 160 MPa, the timing had to be retarded to maintain the same NOx level, and this resulted in a 1 to 2% increase in BSFC. The rounded edged nozzles were found to have an increased discharge coefficient.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

1995-10-01
952360
A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Technical Paper

Effects of Multiple Injections and Flexible Control of Boost and EGR on Emissions and Fuel Consumption of a Heavy-Duty Diesel Engine

2001-03-05
2001-01-0195
A study of the combined use of split injections, EGR, and flexible boosting was conducted. Statistical optimization of the engine operating parameters was accomplished using a new response surface method. The objective of the study was to demonstrate the emissions and fuel consumption capabilities of a state-of-the-art heavy -duty diesel engine when using split injections, EGR, and flexible boosting over a wide range of engine operating conditions. Previous studies have indicated that multiple injections with EGR can provide substantial simultaneous reductions in emissions of particulate and NOx from heavy-duty diesel engines, but careful optimization of the operating parameters is necessary in order to receive the full benefit of these combustion control techniques. Similarly, boost has been shown to be an important parameter to optimize. During the experiments, an instrumented single-cylinder heavy -duty diesel engine was used.
X