Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

2005-10-24
2005-01-3842
Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Journal Article

A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions

2014-04-01
2014-01-1256
One in-cylinder strategy for reducing soot emissions from diesel engines while maintaining fuel efficiency is the use of close-coupled post injections, which are small fuel injections that follow the main fuel injection after a short delay. While the in-cylinder mechanisms of diesel combustion with single injections have been studied extensively and are relatively well understood, the in-cylinder mechanisms affecting the performance and efficacy of post injections have not been clearly established. Here, experiments from a single-cylinder heavy-duty optical research engine incorporating close- coupled post injections are modeled with three dimensional (3D) computational fluid dynamics (CFD) simulations. The overall goal is to complement experimental findings with CFD results to gain more insight into the relationship between post-injections and soot. This paper documents the first stage of CFD results for simulating and analyzing the experimental conditions.
Technical Paper

A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations

2013-04-08
2013-01-1099
A comprehensive biodiesel combustion model is presented for use in multi-dimensional engine simulations. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. Previously, a detailed mechanism for methyl decanoate and methyl-9-decenoate was reduced from 3299 species to 85 species to represent the components of biodiesel fuel. In this work, a second reduction was performed to further reduce the mechanism to 69 species. Steady and unsteady spray simulations confirmed that the model adequately reproduced liquid penetration observed in biodiesel spray experiments. Additionally, the new model was able to capture expected fuel composition effects with low-volatility components and fuel blend sprays penetrating further.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2007-04-16
2007-01-0119
A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load

2010-04-12
2010-01-1263
The objective of this investigation is to optimize a light-duty diesel engine in order to minimize soot, NOx, carbon monoxide (CO), unburned hydrocarbon (UHC) emissions and peak pressure rise rate (PPRR) while improving fuel economy in a low oxygen environment. Variables considered are the injection timings, fractional amount of fuel per injection, half included spray angle, swirl, and stepped-bowl piston geometry. The KIVA-CHEMKIN code, a multi-dimensional computational fluid dynamics (CFD) program with detailed chemistry is used and is coupled to a multi-objective genetic algorithm (MOGA) along with an automated grid generator. The stepped-piston bowl allows more options for spray targeting and improved charge preparation. Results show that optimal combinations of the above variables exist to simultaneously reduce emissions and fuel consumption. Details of the spray targeting were found to have a major impact on the combustion process.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion

2006-04-03
2006-01-0026
Experiments were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine at high speed (1737 rev/min) and loads up to 60% of full load for fully Premixed Charge Compression Ignition (PCCI) combustion. The engine was equipped with a high pressure (150 MPa) Caterpillar 300B HEUI fuel injection system. The engine was run with EGR levels up to 75% and with equivalence ratios up to 0.95. These experiments resulted in compliance of NOx and PM emissions to 2010 emissions mandates levels up to the tested load. The set of experiments also demonstrated the importance of cylinder charge preparation by way of optimized start-of-combustion timing for sufficient in-cylinder mixing. It was found that increased EGR rates, even with the correspondingly increased equivalence ratios, increase mixing time and substantially decrease PM emissions.
Journal Article

A Surrogate Fuel Formulation Approach for Real Transportation Fuels with Application to Multi-Dimensional Engine Simulations

2014-04-01
2014-01-1464
Real transportation fuels, such as gasoline and diesel, are mixtures of thousands of different hydrocarbons. For multidimensional engine applications, numerical simulations of combustion of real fuels with all of the hydrocarbon species included exceeds present computational capabilities. Consequently, surrogate fuel models are normally utilized. A good surrogate fuel model should approximate the essential physical and chemical properties of the real fuel. In this work, we present a novel methodology for the formulation of surrogate fuel models based on local optimization and sensitivity analysis technologies. Within the proposed approach, several important fuel properties are considered. Under the physical properties, we focus on volatility, density, lower heating value (LHV), and viscosity, while the chemical properties relate to the chemical composition, hydrogen to carbon (H/C) ratio, and ignition behavior. An error tolerance is assigned to each property for convergence checking.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

Adaptive Injection Strategies (AIS) for Ultra-Low Emissions Diesel Engines

2008-04-14
2008-01-0058
Homogeneous Charge Compression Ignition (HCCI) combustion is being considered as a practical solution for diesel engines due to its high efficiency and low NOx and PM emissions. However, for diesel HCCI operation, there are still several problems that need to be solved. One is the spay-wall impingement issue associated with early injection, and a further problem is the extension of HCCI operation from low load to higher engine loads. In this study, a combination of Adaptive Injection Strategies (AIS) and a Two-Stage Combustion (TSC) strategy are proposed to solve the aforementioned problems. A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. The TSC concept was applied to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load).
Technical Paper

An Analysis on Time Scale Separation for Engine Simulations with Detailed Chemistry

2011-09-11
2011-24-0028
The simulation of combustion chemistry in internal combustion engines is challenging due to the need to include detailed reaction mechanisms to describe the engine physics. Computational times needed for coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed computer systems are exploited. For these reasons the present paper proposes a time scale separation approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The time scale separation is achieved through the estimation of a characteristic time for each of the species and the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. This allows explicit integration of the system to be carried out, and the step size is governed by tolerance requirements.
Technical Paper

An Evaluation of Common Rail, Hydraulically Intensified Diesel Fuel Injection System Concepts and Rate Shapes

1998-08-11
981930
Hydraulically intensified medium pressure common rail (MPCR) electronic fuel injection systems are an attractive concept for heavy-duty diesel engine applications. They offer excellent packaging flexibility and thorough engine management system integration. Two different concepts were evaluated in this study. They are different in how the pressure generation and injection events are related. One used a direct principle, where the high-pressure generation and injection events occur simultaneously producing a near square injection rate profile. Another concept was based on an indirect principle, where potential energy (pressure) is first stored inside a hydraulic accumulator, and then released during injection, as a subsequent event. A falling rate shape is typically produced in this case. A unit pump, where the hydraulic intensifier is separated from the injector by a high-pressure line, and a unit injector design are considered for both concepts.
Journal Article

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

2010-04-12
2010-01-0864
This study investigates the potential of controlling premixed charge compression ignition (PCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle, direct-injection of diesel fuel was used for combustion phasing control at a medium engine load of 9 bar net IMEP and was also found to be effective to prevent excessive rates of pressure rise. Parameters used in the experiments were guided from the KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism including injection timings, fuel percentages, and intake valve closing (IVC) timings for dual-fuel PCCI combustion. The engine experiments were conducted with a conventional common rail injector (i.e., wide angle and large nozzle hole) and demonstrated control and versatility of dual-fuel PCCI combustion with the proper fuel blend, SOI and IVC timings.
Technical Paper

An Experimental Investigation of Partially Premixed Combustion Strategies Using Multiple Injections in a Heavy-Duty Diesel Engine

2006-04-03
2006-01-0917
Optimizations were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine for NOx, PM and BSFC reductions. The engine was equipped with a Caterpillar 300B HEUI fuel injection system capable of up to four injections with timings from 90 BTDC to 90 ATDC. The engine was operated at a medium load (57%), high speed (1737 rev/min) operation point. A micro-genetic algorithm was utilized to optimize a hybrid, double-injection strategy, which incorporated an early, premixed pilot injection with a late main injection. The fuel injection parameters, intake boost pressure, and EGR were considered in the optimization. The optimization produced a parameter set that met the 2007 and 2010 PM emissions mandate of 0.0134 g/kW-hr, and was within the 1.5x not to exceed NOx + HC mandate of 2.694 g/kW-hr. Following the optimization exercise, further parametric interaction studies were performed to reveal the underlying interactions and phenomena.
Technical Paper

An Experimental Study of Dual Fueling with Gasoline Port Injection in a Single-Cylinder, Air-Cooled HSDI Diesel Generator

2010-04-12
2010-01-0869
An experimental study was conducted on an air cooled high-speed, direct-injection diesel generator that investigated the use of gasoline in a dual fuel PCCI strategy. The single-speed generator used in the study has an effective compression ratio of 17 and runs at 3600 rev/min. Varying amounts of gasoline were introduced into the combustion chamber through a port injection system. The generator uses an all-mechanical diesel fuel injection system that has a fixed injection timing. The experiments explored variable intake temperatures and fuel split quantities to investigate different combustion phasing regimes. Results from the study showed low combustion efficiency at low load. Low load operation was also characterized by high levels of HC and CO (in excess of 20 g/kwh and 50 g/kwh respectively). Operation at 75% load was more efficient, and displayed three different combustion regimes that are possible with PIG (port injected gasoline) dual fuel PCCI.
Technical Paper

An Experimental Study on Emissions Optimization Using Micro-Genetic Algorithms in a HSDI Diesel Engine

2003-03-03
2003-01-0347
Current automotive diesel engine research is motivated by the need to meet more-and-more strict emission regulations. The major target for future HSDI combustion research and development is to find the most effective ways of reducing the soot particulate and NOx emissions to the levels required by future emission regulations. Recently, a variety of statistical optimization tools have been proposed to optimize engine-operating conditions for emissions reduction. In this study, a micro-genetic algorithm technique, which locates a global optimum via the law of “the survival of the fittest”, was applied to a high-speed, direct-injection, single-cylinder (HSDI) diesel engine. The engine operating condition considered single-injection operation using a common-rail fuel injection system was at 1757 rev/min and 45% load.
Technical Paper

An Experimental and Numerical Study of Injector Behavior for HSDI Diesel Engines

2003-03-03
2003-01-0705
An experimental and numerical characterization has been conducted for high-pressure hydraulically actuated fuel injection systems. One single and one double-guided multi-hole Valve-Covered-Orifice (VCO) type injector was used with a Common Rail (CR) injection system, and two mini-sac injectors for Hydraulic electronic Unit Injection system (HEUI) were used with different orifice diameters. The purpose of the study was to explore the effects of the injection system and the operating conditions on the engine emissions for a direct injection small bore diesel engine. The diesel spray was injected into a pressurized chamber with optical access at ambient temperature. The gas density inside the chamber was representative of the density in a High Speed Direct Injection (HSDI) diesel engine at the time of injection. The experimental spray parameters included: injection pressure, injection duration, nozzle type, and nozzle diameter.
X