Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Numerical Investigation of Mixture Formation and Combustion Characteristics of a Hydrogen-Diesel Dual Direct Injection Engine

2021-04-06
2021-01-0526
A hydrogen-diesel dual direct injection (H2DDI) combustion strategy in a compression-ignition engine is investigated numerically, reproducing the configuration of previous experimental investigations. These experiments demonstrated the potential of up to 50% diesel substitution by hydrogen while maintaining high engine efficiency; nevertheless, the emission of NOx increased compared with diesel operation and was strongly dependent on the hydrogen injection timing. This implies the efficiency and NOx emission are closely associated with hydrogen charge stratification; however, the underlying mechanisms are not fully understood. Aiming to highlight the hydrogen injection-timing influence on hydrogen/air mixture stratification and engine performance, the present study numerically investigates the mixture formation and combustion process in the H2DDI engine concept using Converge, a three-dimensional fluid dynamics simulation code.
Technical Paper

A Numerical Study of the Influence of Different Operating Conditions on the Combustion Development in an Automotive-Size Diesel Engine

2015-09-01
2015-01-1852
In this paper, numerical simulations of an automotive-size optical diesel engine have been conducted employing the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model and a reduced n-heptane chemical mechanism implemented in OpenFOAM. The current paper builds on a previous work where the model has been validated for the same engine using optical diagnostic data. The present study investigates numerically the influence of different operating conditions - relevant for modern diesel engines - on the mixture formation development under non-reactive conditions as well as low- and high-temperature ignition behaviour and flame evolution in the presence of strong jet-wall interactions typically encountered in automotive-size diesel engines. Also, emissions of CO and unburned hydrocarbons (UHC) are considered.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Journal Article

Effect of Injection Pressure on Transient Behaviour of Wall-Interacting Jet Flame Base in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2536
Influence of the injection pressure on the temporal evolution of lifted jet flame base upon the bowl wall impingement has been studied in a small-bore optical diesel engine. Previous studies suggest that the jet-wall interaction causes re-entrainment of combustion products into the incoming jet, which shortens the lift-off length during the injection and thereby increasing downstream soot. After the end of injection, the flame base slowly moves downstream as the diminishing jet momentum results in reduced re-entrainment. How the injection pressure impacts this transient behaviour of the flame base is a main focus of the present study. Common-rail pressure was varied from 70 to 160 MPa at a fixed injection mass (10 mg per hole) and timing (7°CA bTDC).
Technical Paper

High-Speed Imaging of Soot Luminosity and Spectral Analysis of In-Cylinder Pressure Trace during Diesel Knock

2014-04-01
2014-01-1259
The present study focuses on the observation of knock phenomena in a small-bore optical diesel engine. Current understanding is that a drastic increase of pressure during the premixed burn phase of the diesel combustion causes gas cavity resonances, which in turn induce a high frequency pressure ringing. The frequency and severity of this ringing can be easily measured by using a pressure transducer. However, visual information of flames under knocking conditions is limited especially for a small-bore diesel engine. To fill this gap, high-speed imaging of soot luminosity is performed in conjunction with in-cylinder pressure measurement during knocking cycles in an automotive-size optical diesel engine. From the experiments, flames were observed to oscillate against the direction of the swirl flow when the pressure ringing occurred.
Technical Paper

In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine

2018-04-03
2018-01-0246
The present study explores the effect of in-cylinder generated non-thermal plasma on hydroxyl and soot development. Plasma was generated using a newly developed Microwave Discharge Igniter (MDI), a device which operates based on the principle of microwave resonation and has the potential to accentuate the formation of active radical pools as well as suppress soot formation while stimulating soot oxidation. Three diagnostic techniques were employed in a single-cylinder small-bore optical diesel engine, including chemiluminescence imaging of electronically excited hydroxyl (OH*), planar laser induced fluorescence imaging of OH (OH-PLIF) and planar laser induced incandescence (PLII) imaging of soot. While investigating the behaviour of MDI discharge under engine motoring conditions, it was found that plasma-induced OH* signal size and intensity increased with higher in-cylinder pressures albeit with shorter lifetime and lower breakdown consistency.
Journal Article

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

2018-04-03
2018-01-1418
Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure, and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two high-speed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires.
Journal Article

In-Flame Soot Sampling and Particle Analysis in a Diesel Engine

2013-04-08
2013-01-0912
In-flame soot sampling based on the thermophoresis of particles and subsequent transmission electron microscope (TEM) imaging has been conducted in a diesel engine to study size, shape and structure of soot particles within the reacting diesel jet. A direct TEM sampling is pursued, as opposed to exhaust sampling, to gain fundamental insight about the structure of soot during key formation and oxidation stages. The size and shape of soot particles aggregate structure with stretched chains of spherical-like primary particles is currently an unknown for engine soot modelling approaches. However, the in-flame sampling of soot particles in the engine poses significant challenges in order to extract meaningful data. In this paper, the engine modification to address the challenges of high-pressure sealing and avoiding interference with moving valves and piston are discussed in detail.
Journal Article

Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession

2009-04-20
2009-01-1356
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis.
Technical Paper

Influence of Injection Timing for Split-Injection Strategies on Well-Mixed High-Load Combustion Performance in an Optically Accessible Spark-Ignition Direct-Injection (SIDI) Engine

2017-03-28
2017-01-0657
One major drawback of spark-ignition direct-injection (SIDI) engines is increased particulate matter (PM) emissions at high load, due to increased wall wetting and a reduction in available mixture preparation time when compared to port-fuel injection (PFI). It is therefore necessary to understand the mechanics behind injection strategies which are capable of reducing these emissions while also maintaining the performance and efficiency of the engine. Splitting the fuel delivery into two or more injections is a proven way of working towards this goal, however, many different injection permutations are possible and as such there is no clear consensus on what constitutes an ideal strategy for any given objective. In this study, the effect of the timing of the first and second injections for an evenly split dual injection strategy are investigated in an optical SIDI engine running at 1200 RPM with an unthrottled intake.
Journal Article

Injection Pressure Effects on the Flame Development in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-0791
The impact of fuel injection pressure on the development of diesel flames has been studied in a light-duty optical engine. Planer laser-induced fluorescence imaging of fuel (fuel-PLIF) and hydroxyl radicals (OH-PLIF) as well as line-of-sight integrated chemiluminescence imaging of cool-flame and OH* were performed for three different common-rail pressures including 70, 100, and 130 MPa. The injection timing and injected fuel mass were held constant resulting in earlier end of injection for higher injection pressure. The in-cylinder pressure was also measured to understand bulk-gas combustion conditions through the analysis of apparent heat release rate. From the cool-flame images, it is found that the low-temperature reaction starts to occur in the wall-interacting jet head region where the fuel-air mixing could be enhanced due to a turbulent ring-vortex formed during jet-wall interactions.
Technical Paper

Multiple Injection Strategy Investigation for Well-Mixed Operation in an Optical Wall-Guided Spark-Ignition Direct-Injection (WG-SIDI) Engine through Flame Shape Analysis

2016-10-17
2016-01-2162
One major drawback of spark-ignition direct-injection (SIDI) engines is increased particulate matter (PM) and unburned hydrocarbon emissions at high load, due to wall wetting and a reduction in available air/fuel mixing time when compared to port-fuel injection (PFI). It is therefore necessary to understand the mechanics behind injection strategies which are capable of reducing these emissions while also maintaining the performance and efficiency of the engine. This study investigates the effect of varying the number fuel injection events and equivalence ratio on the operation of a wall-guided SIDI (WG-SIDI) engine. Of particular interest is how increased mixture homogeneity achieved by the double injection events impacts in-cylinder conditions and flame development.
Technical Paper

Soot Formation Modelling of Spray-A Using a Transported PDF Approach

2015-09-01
2015-01-1849
Numerical simulations of soot formation were performed for n-dodecane spray using the transported probability density function (TPDF) method. Liquid n-dodecane was injected with 1500 bar fuel pressure into a constant-volume vessel with an ambient temperature, oxygen volume fraction and density of 900 K, 15% and 22.8 kg/m3, respectively. The interaction by exchange with the mean (IEM) model was employed to close the micro-mixing term. The unsteady Reynolds-averaged Navier-Stokes (RANS) equations coupled with the realizable k-ε turbulence model were used to provide turbulence information to the TPDF solver. A 53-species reduced n-dodecane chemical mechanism was employed to evaluate the reaction rates. Soot formation was modelled with an acetylene-based two-equation model which accounts for simultaneous soot particle inception, surface growth, coagulation and oxidation by O2 and OH.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Technical Paper

Triple Injection Strategies for Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Small-Bore Common-Rail Diesel Engine

2019-04-02
2019-01-1148
Implementing triple injection strategies in partially premixed charge-based gasoline compression ignition (GCI) engines has shown to achieve improved engine efficiency and reduced NOx and smoke emissions in many previous studies. While the impact of the triple injections on engine performance and engine-out emissions are well known, their role in controlling the mixture homogeneity and charge premixedness is currently poorly understood. The present study shows correspondence between the triple injection strategies and mixture homogeneity/premixedness through the experimental tests of second/third injection proportion and their timing variations with an aim to explain the observed GCI engine performance and emission trends. The experiments were conducted in a single cylinder, small-bore common-rail diesel engine fuelled with a commercial gasoline fuel of 95 research octane number (RON) and running at 2000 rpm and 830 kPa indicated mean effective pressure conditions.
Journal Article

Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging

2009-04-20
2009-01-0658
Shadowgraph/schlieren imaging techniques have often been used for flow visualization of reacting and non-reacting systems. In this paper we show that high-speed shadowgraph visualization in a high-pressure chamber can also be used to identify cool-flame and high-temperature combustion regions of diesel sprays, thereby providing insight into the time sequence of diesel ignition and combustion. When coupled to simultaneous high-speed Mie-scatter imaging, chemiluminescence imaging, pressure measurement, and spatially-integrated jet luminosity measurements by photodiode, the shadowgraph visualization provides further information about spray penetration after vaporization, spatial location of ignition and high-temperature combustion, and inactive combustion regions where problematic unburned hydrocarbons exist. Examples of the joint application of high-speed diagnostics include transient non-reacting and reacting injections, as well as multiple injections.
X