Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Review of the Wind Conditions Experienced by a Moving Vehicle

1998-02-01
981182
Vehicle aerodynamic development is normally undertaken in smooth flow wind tunnels. In contrast, the on-road environment is turbulent, with variations in the relative velocity experienced by the moving vehicle caused mainly by the effects of atmospheric turbulence. In this review the turbulence inherent in the atmosphere is considered, following the approach of wind engineers. The variations of atmospheric wind velocity with time, height, terrain and thermal stratification are summarised and discussed. Statistical parameters presented include mean velocity, turbulence intensities, spectra and probability density functions. The resulting fluctuating approach flow (relative velocity) of the moving vehicle is then considered. The effect of the fluctuating velocity field on parameters of interest to vehicle aerodynamicists (such as aerodynamic noise) are made.
Technical Paper

Aerodynamic Performance of Vehicles in Platoons: The Influence of Backlight Angles

2007-04-16
2007-01-1547
Future generation road networks are intended to feature improved throughput and significantly reduced fleet energy consumption. ‘Platooning’ arranges moving vehicles in close longitudinal convoy, and is viewed as a core aspect of such technologies. The aerodynamic performance of platoons potentially allows increased traffic throughput and a useful energy reduction; however the magnitude of this reduction varies significantly with inter-vehicle spacing. For some vehicles in platoons under specific conditions, the resulting aerodynamic performance may actually worsen [2]. This work attempts to deconstruct relationships between two key vehicle geometries and their aerodynamic performance in platoons. A study of homogeneous and heterogeneous platoons using common reference models is presented.
Technical Paper

Effects of Vehicle A-pillar Shape on Local Mean and Time-Varying Flow Properties

2001-03-05
2001-01-1086
Separated flow is the main generator of aerodynamic noise in passenger vehicles. The flow around the A-pillar is central to the wind noise as many modern vehicles still have high fluctuating pressures due to flow separations in this region. Current production vehicle geometry is restricted due to the amount of three dimensionality possible in laminated windscreen glass (and door opening etc). New materials (e.g., polycarbonate) offer the possibility of more streamlined shapes which allow less or no flow separation. Therefore, a series of experimental investigations have been conducted to study the effects of the A-pillar and windshield geometry and yaw angles on the local flow and noise using a group of idealised road vehicle models. Surface mean and fluctuating pressures were measured on the side window in the A-pillar regions of all models at different Reynolds numbers and yaw angles.
Technical Paper

Green Racing; Solar and FSAE

2011-10-06
2011-28-0023
Green racing technologies are described with a focus on two categories of sustainable racing; solar racing, including an overview of the World Solar Challenge (WSC) held in Australia, and Formula SAE-E (Society of Automotive Engineers-Electric). Both types of cars utilise sustainably generated electricity, the former uses solar arrays integrated into the vehicle body and the latter electricity generated from a renewable energy park and stored onboard in lithium polymer cells. The design considerations of both vehicles are contrasted with a focus on energy usage minimisation. The Aurora team (which has broken many records, including winning the World Solar Challenge across Australia) is used to illustrate the importance of minimizing the power requirements by having a low aerodynamic drag, frontal area, a highly efficient powertrain and low rolling resistance. To illustrate the technology behind FSAE Electric the R10E car from RMIT is described.
Technical Paper

The Effect of Rear Slant Angle on Vehicle Wakes and Implications for Platoons

2006-04-03
2006-01-0341
Future Generation Intelligent Transport Systems (FGITS) will likely implement solutions to increase traffic density and thus throughput on existing infrastructures. Platooning (e.g. the close coupling of vehicles) may be a prominent feature of this solution, placing an understanding of near wake flows paramount to the FGITS case. However the notion of vehicles spaced at greater intervals is not only more commonly associated with present day conditions; it is furthermore characteristic of mixed-fleet conditions. These are likely to span the significant era between present day and complete FGITS fleets. Thus, far wake flows are similarly relevant. Near and far wake analysis of a variable geometry Ahmed Model (a research form able to replicate structured wakes pertinent to practical vehicle flows) is used to explore relevant generic flow structures.
Technical Paper

The Unsteady Wind Environment of Road Vehicles, Part One: A Review of the On-road Turbulent Wind Environment

2007-04-16
2007-01-1236
This paper is the first of two papers that address the simulation and effects of turbulence on surface vehicle aerodynamics. This, the first paper, focuses on the characteristics of the turbulent flow field encountered by a road vehicle. The natural wind environment is usually unsteady but is almost universally replaced by a smooth flow in both wind tunnel and computational domains. In this paper, the characteristics of turbulence in the relative-velocity co-ordinate system of a moving ground vehicle are reviewed, drawing on work from Wind Engineering experience. Data are provided on typical turbulence levels, probability density functions and velocity spectra to which vehicles are exposed. The focus is on atmospheric turbulence, however the transient flow field from the wakes of other road vehicles and roadside objects are also considered.
Technical Paper

Wind-Tunnel Tests of Vehicle Cooling System Performance at High Blockage

2000-03-06
2000-01-0351
Wind tunnels provide a convenient, repeatable method of assessing vehicle engine cooling, yet important draw-backs are the lack of a moving ground and rotating wheels, blockage constraints and, in some tunnels, the inability to simulate ambient temperatures. A series of on-road and wind-tunnel experiments has been conducted to validate a process for evaluating vehicle cooling system performance in a high blockage aerodynamic wind tunnel with a fixed ground simulation. Airflow through the vehicle front air intake was measured via a series of pressure taps and the wind-tunnel velocity was adjusted to match the corresponding pressures found during the road tests. In order to cope with the inability to simulate ambient temperatures, the technique of Specific Dissipation (SD) was used (which has previously been shown to overcome this problem).
X