Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

Functional Safety for Hybrid and Electric Vehicles

2012-04-16
2012-01-0032
Hybrid and electric vehicles present a promising trade-off between the necessary reductions in emissions and fuel consumption, the improvement in driving pleasure and performance of today's and tomorrow's vehicles. These hybrid vehicles rely primarily on electronics for the control and the coordination of the different sub-systems or components. The number and complexity of the functions distributed over many control units is increasing in these vehicles. Functional safety, defined as absence of unacceptable risk due to the hazards caused by mal-function in the electric or electronic systems is becoming a key factor in the development of modern vehicles such as electric and hybrid vehicles. This important increase in functional safety-related issues has raised the need for the automotive industry to develop its own functional safety standard, ISO 26262.
Journal Article

Operation Strategies for Controlled Auto Ignition Gasoline Engines

2009-04-20
2009-01-0300
Controlled Auto Ignition combustion systems have a high potential for fuel consumption and emissions reduction for gasoline engines in part load operation. Controlled auto ignition is initiated by reaching thermal ignition conditions at the end of compression. Combustion of the CAI process is controlled essentially by chemical kinetics, and thus differs significantly from conventional premixed combustion. Consequently, the CAI combustion process is determined by the thermodynamic state, and can be controlled by a high amount of residual gas and stratification of air, residual gas and fuel. In this paper both fundamental and application relevant aspects are investigated in a combined approach. Fundamental knowledge about the auto-ignition process and its dependency on engine operating conditions are required to efficiently develop an application strategy for CAI combustion.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Journal Article

Performance Plus Range: Combined Battery Concept for Plug‑In Hybrid Vehicles

2013-04-08
2013-01-1525
PlugIn Hybrid Electric Vehicles (PHEV) offer the opportunity to experience electric driving without the risk of vehicle break-down due to a low battery charge state. Thus, PHEV's represent an attractive means of meeting future CO2-legislation. PHEV batteries must fulfill a divergent list of requirements: on the one hand, the battery must supply sufficient energy to ensure it can be driven an appropriate distance in EV-mode. On the other hand, even with a low state-of-charge (SOC), the battery must supply sufficient power to assist the engine in vehicle acceleration or to recuperate on deceleration. This leads to a compromise in terms of cell selection. Fundamentally, high energy cells cannot provide high charge and discharge rates and high power cells cannot provide sufficient energy.
X