Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Technical Paper

Catalyst Aging Method for Future Emissions Standard Requirements

2010-04-12
2010-01-1272
This paper describes an alternative catalyst aging process using a hot gas test stand for thermal aging. The solution presented is characterized by a burner technology that is combined with a combustion enhancement, which allows stoichiometric and rich operating conditions to simulate engine exhaust gases. The resulting efficiency was increased and the operation limits were broadened, compared to combustion engines that are typically used for catalyst aging. The primary modification that enabled this achievement was the recirculation of exhaust gas downstream from catalyst back to the burner. The burner allows the running simplified dynamic durability cycles, which are the standard bench cycle that is defined by the legislation as alternative aging procedure and the fuel shut-off simulation cycle ZDAKW. The hot gas test stand approach has been compared to the conventional engine test bench method.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
Technical Paper

Functional Safety for Hybrid and Electric Vehicles

2012-04-16
2012-01-0032
Hybrid and electric vehicles present a promising trade-off between the necessary reductions in emissions and fuel consumption, the improvement in driving pleasure and performance of today's and tomorrow's vehicles. These hybrid vehicles rely primarily on electronics for the control and the coordination of the different sub-systems or components. The number and complexity of the functions distributed over many control units is increasing in these vehicles. Functional safety, defined as absence of unacceptable risk due to the hazards caused by mal-function in the electric or electronic systems is becoming a key factor in the development of modern vehicles such as electric and hybrid vehicles. This important increase in functional safety-related issues has raised the need for the automotive industry to develop its own functional safety standard, ISO 26262.
Technical Paper

HiL-Calibration of SI Engine Cold Start and Warm-Up Using Neural Real-Time Model

2004-03-08
2004-01-1362
The modern engine design process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. The introduction of predictive real-time simulation tools that represent the entire powertrain can likely contribute to improving the efficiency of the calibration process. Engine models, which are purely based on physical first principles, are usually not capable of real-time applications, especially if the simulation is focused on cold start and warm-up behavior. However, the initial data definition for the ECU using a Hardware-in-the-Loop (HiL)-Simulator requires a model with both real-time capability and sufficient accuracy. The use of artificial intelligence systems becomes necessary, e.g. neural networks. Methods, structures and the realization of a hybrid real-time model are presented in this paper, which combines physical and neural network models.
Technical Paper

Laminar Spherical Flame Kernel Investigation of Very Rich Premixed Hydrocarbon-Air-Mixtures in a Closed Vessel under Microgravity Conditions

2008-04-14
2008-01-0471
In this work very rich premixed laminar spherical flame kernels of hydrocarbon-air combustible mixtures were experimentally and numerically investigated under microgravity conditions. These microgravity combustion experiments were carried out in the Drop Tower of Bremen University. The Closed-Vessel-Bomb-Method (CVBM) was applied for all experimental investigations combined with a monochromatic Helium-Neon-Schlieren Measurement Technique. Images of the propagating spherical flames were tracked with a High-Speed-Camera. The pressure vessel enables optical access and contains a volume of approx. half a litre. Combustible Mixtures were investigated at initial pressures up to 30 bar and initial temperatures were 420 K for all experiments, whereas the equivalence ratio for investigated N-Pentane-Air-Mixtures was Φ=3.0, N-Hexane-Air-Mixtures was Φ=3.3, N-Heptane-Air-Mixtures was Φ=3.5 and the equivalence ratio for investigated Isooctane-Air-Mixtures was Φ=3.9 for all experiments.
Technical Paper

Objectified Drivability Evaluation and Classification of Passenger Vehicles in Automated Longitudinal Vehicle Drive Maneuvers with Engine Load Changes

2019-04-02
2019-01-1286
To achieve global market and brand specific drivability characteristics as unique selling proposition for the increasing number of passenger car derivatives, an objectified evaluation approach for the drivability capabilities of the various cars is required. Thereto, it is necessary to evaluate the influence of different engine concepts in various complex and interlinked powertrain topologies during engine load change maneuvers based on physical criteria. Such an objectification approach enables frontloading of drivability related engineering tasks by the execution of drivability development and calibration work within vehicle subcomponent-specific closed-loop real-time co-simulation environments in early phases of a vehicle development program. So far, drivability functionalities could be developed and calibrated only towards the end of a vehicle development program, when test vehicles with a sufficient level of product maturity became available.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Journal Article

Performance Plus Range: Combined Battery Concept for Plug‑In Hybrid Vehicles

2013-04-08
2013-01-1525
PlugIn Hybrid Electric Vehicles (PHEV) offer the opportunity to experience electric driving without the risk of vehicle break-down due to a low battery charge state. Thus, PHEV's represent an attractive means of meeting future CO2-legislation. PHEV batteries must fulfill a divergent list of requirements: on the one hand, the battery must supply sufficient energy to ensure it can be driven an appropriate distance in EV-mode. On the other hand, even with a low state-of-charge (SOC), the battery must supply sufficient power to assist the engine in vehicle acceleration or to recuperate on deceleration. This leads to a compromise in terms of cell selection. Fundamentally, high energy cells cannot provide high charge and discharge rates and high power cells cannot provide sufficient energy.
Technical Paper

Sustainable Propulsion in a Post-Fossil Energy World: Life-Cycle Assessment of Renewable Fuel and Electrified Propulsion Concepts

2024-07-02
2024-01-3013
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. To date, extensive research has been conducted on the CO2 life cycle analysis of mobile propulsion systems. However, achieving absolute net-zero CO2 emissions requires the adjustment of the relevant key performance indicators for the development of mobile propulsion systems. In this context, research is presented that examines the ecological and economic sustainability impacts of a hydrogen-fueled mild hybrid vehicle, a hydrogen-fueled 48V hybrid vehicle, a methanol-fueled 400V hybrid vehicle, a methanol-to-gasoline-fueled plug-in hybrid vehicle, a battery electric vehicle, and a fuel cell electric vehicle. For this purpose, a combined Life-Cycle Assessment (LCA) and Life-Cycle Cost Assessment was performed for the different propulsion concepts.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
X