Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Generic Modeling Approach for Automotive Power Net Consumers

2012-04-16
2012-01-0924
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future automotive electrical networks. Both reliability and performance must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. Often, in order to cope with these requirements, merely an upgrade of the existing wiring harness design is used, resulting in additional complexity, weight, and cost [3]. A characterization of the wiring harness and its electrical consumers facilitates a systematic optimization approach aimed at designing new automotive power networks [1, 5]. Measurement and analysis methods to characterise the thermal behaviour of the wiring harness have been presented and discussed in a previous paper [4] This paper presents and compares two methods aimed at modeling the electrical behavior of consumers at various voltages and temperatures.
Journal Article

A New Approach to the Test, Assessment and Optimization of Robust Electrical Distribution Systems

2013-04-08
2013-01-0396
Both the electrical portion of the powertrain and the rising number of auxiliary systems will considerably increase the electrical power requirements in future vehicles. In addition, multiple voltage supply levels will enhance the complexity of the electrical distribution system (EDS), while strict cost, weight, packaging, and safety constraints must be upheld, posing serious design challenges in terms of robustness, reliability and energy efficiency. Currently, a self-contained integral test or evaluation of the EDS is normally not applied. For such a purpose, quantitative quality criteria are introduced here which allow a comparative assessment of an EDS by addressing the dynamic and static stability of the supply voltage, the reliability of the fusing system, and the ability to provide the required electrical power. The presented approach uses both precisely-defined test scenarios and a comprehensive EDS test bench.
Technical Paper

Characterization and Test of Automotive Electrical Power Networks

2009-04-20
2009-01-1093
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future vehicle power nets. Reliability and performance of the electrical network must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. This paper presents a test bench for automotive electrical networks based on a hardware-in-the-loop (HiL) platform. The test bench is used to assess the power and temperature behavior of the wiring harness and the connected power consumers. This characterisation facilitates the development of new tailored automotive electrical networks to meet the increased requirements while efficiently using the available resources.
Technical Paper

Data-driven Modeling of Thermal Fuses

2018-04-03
2018-01-0768
Both the integration of safety-critical electrical systems and the increasing power requirements in vehicles present a challenge for electrical distribution systems in terms of reliability, packaging, weight, and cost. In this regard, the wire protection device is a key element, as it determines the reliability of the short circuit detection, the immunity against false tripping, and the wire diameters. Currently, in most cases, thermal fuses are used, due to their low cost and robust design. However, the description of their tripping behavior based only on steady-state currents is insufficient for the increasingly complex current profiles in vehicles. Thus, to achieve an optimum dimensioning of a fuse-wire combination, a profound understanding of the thermal behavior of both components under dynamic load conditions is mandatory. However, the FEM tools used for the thermal design of fuses are relatively slow, require huge calculation resources, and must be well-parameterized.
Technical Paper

Development of Fuel Cell System Air Management Utilizing HIL Tools

2002-03-04
2002-01-0409
In this paper, boosting strategies are investigated for part load operation of typical fuel-cell-systems. The optimal strategy can mainly be obtained by simulation. The boosting strategy is one of the most essential parameters for design and operation of a fuel-cell-system. High pressure ratios enable high power densities, low size and weight. Simultaneously, the demands in humidification and water recovery for today's systems are reduced. But power consumption and design effort of the system increases strongly with the pressure level. Therefore, the main focus must be on the system efficiencies at part load. In addition, certain boundary conditions like the inlet temperature of the fuel-cell stack must be maintained. With high pressure levels the humidification of the intake air before, within or after the compressor is not sufficient to dissipate enough heat. Vaporization during the compression process shows efficiency advantages while the needs in heat dissipation decreases.
Technical Paper

Hardware-in-the-Loop Based Virtual Emission Calibration for a Gasoline Engine

2021-04-06
2021-01-0417
In the field of gasoline powertrain calibration, the challenges are growing due to ever shorter time-to-market requirements and a simultaneous increase in powertrain complexity. In addition, the great variety of vehicle variants requires an increasing number of prototypes for calibration and validation tasks within the framework of the current Real Driving Emissions (RDE) regulations and the expected Post Euro 6 emission standards. Hardware-in-the-Loop (HiL) simulations have been introduced successfully to support the calibration tasks in parallel to the conventional vehicle development activities. The HiL approach enables a more reliable compliance with emission limits and improves the quality of calibrations, while reducing the number of prototype vehicles, test resources and thus overall development costs.
Technical Paper

HiL-Calibration of SI Engine Cold Start and Warm-Up Using Neural Real-Time Model

2004-03-08
2004-01-1362
The modern engine design process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. The introduction of predictive real-time simulation tools that represent the entire powertrain can likely contribute to improving the efficiency of the calibration process. Engine models, which are purely based on physical first principles, are usually not capable of real-time applications, especially if the simulation is focused on cold start and warm-up behavior. However, the initial data definition for the ECU using a Hardware-in-the-Loop (HiL)-Simulator requires a model with both real-time capability and sufficient accuracy. The use of artificial intelligence systems becomes necessary, e.g. neural networks. Methods, structures and the realization of a hybrid real-time model are presented in this paper, which combines physical and neural network models.
Technical Paper

HiL-based ECU-Calibration of SI Engine with Advanced Camshaft Variability

2006-04-03
2006-01-0613
A main focus of development in modern SI engine technology is variable valve timing, which implies a high potential of improvement regarding fuel consumption and emissions. Variable opening, period and lift of inlet and outlet valves enable numerous possibilities to alter gas exchange and combustion. However, this additional variability generates special demands on the calibration process of specific engine control devices, particularly under cold start and warm-up conditions. This paper presents procedures, based on Hardware-in-the-Loop (HiL) simulation, to support the classical calibration task efficiently. An existing approach is extended, such that a virtual combustion engine is available including additional valve timing variability. Engine models based purely on physical first principles are often not capable of real time execution. However, the definition of initial parameters for the ECU requires a model with both real time capability and sufficient accuracy.
Technical Paper

Investigation of Predictive Models for Application in Engine Cold-Start Behavior

2004-03-08
2004-01-0994
The modern engine development process is characterized by shorter development cycles and a reduced number of prototypes. However, simultaneously exhaust after-treatment and emission testing is becoming increasingly more sophisticated. It is expected that predictive simulation tools that encompass the entire powertrain can potentially improve the efficiency of the calibration process. The testing of an ECU using a HiL system requires a real-time model. Additionally, if the initial parameters of the ECU are to be defined and tested, the model has to be more accurate than is typical for ECU functional testing. It is possible to enhance the generalization capability of the simulation, with neuronal network sub-models embedded into the architecture of a physical model, while still maintaining real-time execution. This paper emphasizes the experimental investigation and physical modeling of the port fuel injected SI engine.
Journal Article

Model-Based Circuit Protection Using Solid State Switches

2017-03-28
2017-01-1641
Currently, circuit breakers and, in most cases, thermal fuses are used for wire protection due to their low cost and robust design. As an alternative, solid state switches are being considered within future electrical distribution systems (EDS) for several reasons, e.g. resetability, diagnosis, smaller tolerances, and reduced dependencies on ambient temperature or arcing. Particularely if combined with benefits on the system level, such an application can be advantageous. The new approach presented in this paper uses a thermal model of the wire instead of only an emulation of the thermal fuse behavior. This allows, based on the electrical current profile, the calculation of the wire temperature and thus a robust and precise protection of the wire. In addition, it minimizes the probability of faulty switching, which is of particular importance with regard to safety-critical electrical functions.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Technical Paper

Optimization and Evaluation of 12V/48V Architectures Based on EDS Simulation and Real Drive Cycles

2019-04-02
2019-01-0482
Both the rising number of electrical systems and the electrical part of the powertrain are considerably increasing the electrical power requirements of vehicles. As a consequence, multiple voltage supply levels have been introduced. However, even if only the 12V/48V configuration is considered, as in this paper, the number of possible electrical distribution system (EDS) architectures is greatly enlarged. Additional degrees of freedom are the allocation of the loads to the voltage levels, the dimensioning of new components, and the control strategy. Hence, the optimization of such architectures must be based on simulation, which allows the evaluation of a multitude of variants and test scenarios within an acceptable time frame. While strict cost, weight, and quality constraints must be upheld, the stability of the voltage supply is a major focus because a significant part of future electrical systems is highly safety-critical.
Technical Paper

Proof of Concept for Hardware-in-the-Loop Based Knock Detection Calibration

2021-04-06
2021-01-0424
Knock control is one of the most vital functions for safe and fuel-efficient operation of gasoline engines. However, all knock control strategies rely on accurate knock detection to operate the engine close to the optimal set point. Knock detection is usually calibrated on the engine test bench, requiring the engine to run with knocking combustion in a time-consuming multi-stage campaign. Model-based calibration significantly reduces calibration loops on the test bench. However, this method requires a large effort in building and validating the model, which is often limited by the lack of function documentation, available measurements or hardware representation. As the software models are often not available, function structures vary between manufacturers and sub model functions are often documented as black boxes. Hence, using the model-based approach is not always possible.
Technical Paper

Real-Time Simulation Environment for the Test of Driver Assistance Systems

2009-04-20
2009-01-0157
The paper presents a simulation environment for the test of driver assistance systems. It covers software-in-the-loop and hardware-in-the-loop test capabilities. In the hardware-in-the-loop (HiL) configuration, real components such as electronic control units (ECUs) and actuators are embedded in the system. First, requirements for a virtual environment are defined. They build the basis for the entire simulation. Special emphasis is given to the interaction between the simulated vehicle under test and its traffic environment. A virtual environment was developed in which the simulated vehicle can drive on a road together with the surrounding traffic. The simulation environment is composed mainly of a traffic scenario generator and a simulation of sensor behavior allowing the recognition of the vehicle's surroundings. Appropriate critical traffic scenarios are generated depending on the tested driver assistance system.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
X