Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

An Analytical Tire Model for Vehicle Simulation in Normal Driving Conditions

In the simulation of the dynamic response of a vehicle, the accuracy of the predictions strongly depends on the tire properties. Since the physics of tire force generation is highly nonlinear and complex, semi-empirical models are used, which are mathematically curve fitted to experimental data. Although this approach yields realistic tire behavior, it requires many experimental coefficients. Even though tire forces generated by a real tire are nonlinear, there is a linear region where the slip and slip angle are low. Most normal driving is done in this region. This paper will present a new analytical tire model capable of simulating pure cornering, pure braking, and combined braking/cornering in this region. The dynamic properties of the tire are analytically derived as functions of the slip, slip angle, normal force, and road friction coefficient.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Technical Paper

Influence of Suspension Properties on Vehicle Roll Stability

Vehicle roll dynamics is strongly influenced by suspension properties such as roll center height, roll steer and roll camber. In this paper, the effects of suspension properties on vehicle roll response has been investigated using a multi-body vehicle dynamics program. A full vehicle model equipped with front MacPherson and rear multilink suspensions has been used for the study. Roll dynamics of the vehicle were evaluated by performing fixed timing fishhook maneuver in the simulation. Variations of vehicle roll response due to changes in the suspension properties were assessed by quantitatively analyzing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of Experiments has been used for identifying critical hardpoints affecting the suspension parameters and optimization techniques were employed for parameter optimization.
Journal Article

Investigation of Trailer Yaw Motion Control Using Active Front Steer and Differential Brake

This paper presents a control system development for a yaw motion control of a vehicle-trailer combination using the integrated control of active front steer (AFS) and differential brake (DB). A 21 degree of freedom (dof) vehicle-trailer combination model that represents a large SUV and a medium one-axle trailer has been developed for this study. A model reference sliding mode controller (MRSMC) has been developed to generate the desired yaw moment. Based on the understanding of advantages and limitations of AFS and DB, a new integrated control algorithm was proposed. The simulation result shows that integrated control of AFS and DB can restrain the trailer's oscillation effectively and shows less longitudinal speed drop and higher stable margin compared to the DB activated only case while maintaining the yaw stability.