Refine Your Search

Search Results

Viewing 1 to 13 of 13
Standard

Design Guidelines for Fiberboard Materials

2010-06-21
HISTORICAL
J1774_201006
This document provides information on the various fiberboard products, which are available for automotive application. It is intended to give engineers and designers a better understanding of product usage, characteristics, properties and industry terminology. The following sections cover these topics: 2 General Product Information 3 Design Characteristics 4 Physical/Mechanical Properties 5 Fiberboard Definitions In sections 2, 3 and 4 the fiberboard products are categorized. These sections give an overview of product types, with general information about characteristics and properties. In cases where product categories encompass more than one material or material grade, ranges were established to cover all of the products in that category. The individual companies that supply fiberboard products should be consulted for specific information about a particular product or application.
Standard

Load Deflection Testing of Urethane Foams for Automotive Seating

2007-08-13
HISTORICAL
J815_200708
Traditionally, cellular foam products have been checked for load deflection by determining the load required to cause a 25% deflection. In automotive seating, on the other hand, the load deflection is checked by determining the thickness under constant force conditions to (a) indicate the initial softness of the seat cushion, (b) measure how thick the seat cushion is under the average passenger load (a measurement of padding left for “ride” and seated height), and (c) determine a value to indicate resiliency. In this method these measurements are made by determining the thickness of the seat cushion under fixed loads of 4.5 N, 110 N, and 220 N with a 323 cm2 circular indentor foot.
Standard

Load Deflection Testing of Urethane Foams for Automotive Seating

2002-10-30
HISTORICAL
J815_200210
Traditionally, cellular foam products have been checked for load deflection by determining the load required to cause a 25% deflection. In automotive seating, on the other hand, the load deflection is checked by determining the thickness under constant force conditions to (a) indicate the initial softness of the seat cushion, (b) measure how thick the seat cushion is under the average passenger load (a measurement of padding left for “ride” and seated height), and (c) determine a value to indicate resiliency. In this method these measurements are made by determining the thickness of the seat cushion under fixed loads of 4.5 N, 110 N, and 220 N with a 323 cm 2 circular indentor foot.
Standard

Load Deflection Testing of Urethane Foams for Automotive Seating

2001-12-10
HISTORICAL
J815_200112
Traditionally, cellular foam products have been checked for load deflection by determining the load required to cause a 25% deflection. In automotive seating, on the other hand, the load deflection is checked by determining the thickness under constant force conditions to (a) indicate the initial softness of the seat cushion, (b) measure how thick the seat cushion is under the average passenger load (a measurement of padding left for “ride” and seated height), and (c) determine a value to indicate resiliency. In this method these measurements are made by determining the thickness of the seat cushion under fixed loads of 4.5 N, 110 N, and 220 N with a 323 cm 2 circular indentor foot.
Standard

STANDARD CLASSIFICATION SYSTEM FOR FIBERBOARDS

1983-06-01
HISTORICAL
J1323_198306
This classification system provides a means for specifying or describing the pertinent properties of fiberboards for automotive applications. The materials normally specified by this standard are defined in SAE J947, Glossary of Fiberboard Terminology. The test methods commonly used for fiberboards are defined in SAE J315, Fiberboard Test Procedure.
Standard

STANDARD CLASSIFICATION SYSTEM FOR FIBERBOARDS

1980-08-01
HISTORICAL
J1323_198008
This classification system provides a means for specifying or describing the pertinent properties of fiberboards for automotive applications. The materials normally specified by this standard are defined in SAE J947, Glossary of Fiberboard Terminology. The test methods commonly used for fiberboards are defined in SAE J315, Fiberboard Test Procedure.
Standard

STANDARD CLASSIFICATION SYSTEM FOR FIBERBOARDS

1990-09-01
HISTORICAL
J1323_199009
This SAE Standard provides a means for specifying or describing the pertinent properties of fiberboards for automotive applications. The materials normally specified by this standard are defined in SAE J947. The test methods commonly used for fiberboards are defined in SAE J315.
Standard

Standard Classification System for Fiberboards

2003-12-11
HISTORICAL
J1323_200312
This SAE Standard provides a means for specifying or describing the pertinent properties of fiberboards for automotive applications. The materials normally specified by this standard are defined in SAE J947. The test methods commonly used for fiberboards are defined in SAE J315.
Standard

Standard Classification System for Fiberboards

2014-06-04
HISTORICAL
J1323_201406
This SAE Standard provides a means for specifying or describing the pertinent properties of fiberboards for automotive applications. The materials normally specified by this standard are defined in SAE J947. The test methods commonly used for fiberboards are defined in SAE J315.
Standard

Standard Classification System for Fiberboards

2009-05-22
HISTORICAL
J1323_200905
This SAE Standard provides a means for specifying or describing the pertinent properties of fiberboards for automotive applications. The materials normally specified by this standard are defined in SAE J947. The test methods commonly used for fiberboards are defined in SAE J315.
Standard

Test Method for Determining Cold Cracking of Flexible Plastic Materials

2021-09-15
CURRENT
J323_202109
This SAE Recommended Practice is applicable for determining the cold characteristics of flexible plastic materials, as applicable. It consists of three different methods for determining low-temperature properties of materials depending on type of material and end use. The method used shall be as specified by the contractual parties.
Standard

Test Method for Determining Cold Cracking of Flexible Plastic Materials

2004-01-28
HISTORICAL
J323_200401
This SAE Recommended Practice is applicable for determining the cold characteristics of flexible plastic materials, as applicable. It consists of three different methods for determining low-temperature properties of materials depending on type of material and end use.
Standard

Test Method for Determining Cold Cracking of Flexible Plastic Materials

2009-11-09
HISTORICAL
J323_200911
This SAE Recommended Practice is applicable for determining the cold characteristics of flexible plastic materials, as applicable. It consists of three different methods for determining low-temperature properties of materials depending on type of material and end use. The method used shall be as specified by the contractual parties.
X