Refine Your Search

Topic

Search Results

Standard

AVOIDANCE OF HYDROGEN EMBRITTLEMENT OF STEEL

2008-06-01
HISTORICAL
USCAR5-4
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process.
Standard

AVOIDANCE OF HYDROGEN EMBRITTLEMENT OF STEEL

2008-06-01
HISTORICAL
USCAR5-3
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales.
Standard

Automotive Grade Coaxial Cable Performance Specification

2006-01-02
CURRENT
USCAR29
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2007-03-01
HISTORICAL
USCAR5-2
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and define the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. 1.1 Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. 1.2 Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales. NOTE 1: All references to temperatures relate to part core temperature and not the indicated oven air temperature. Statistical data of verifications in temperature at the center of the oven load and oven temperature shall be established to develop the oven profile.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2002-08-22
HISTORICAL
USCAR5-1
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel. It also defines the relief procedures required to minimize the risk of hydrogen embrittlement. SAE/USCAR-5 is intended to control the process.
Standard

Avoidance of Hydrogen Embrittlement of Steel

2019-02-27
CURRENT
USCAR5-5
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and defines the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales.
Standard

Avoidance of Hydrogen Embrittlement of Steel

1997-11-01
HISTORICAL
USCAR5
This standard outlines the conditions that enhance the risk of hydrogen embrittlement of steel and defines the relief procedures required to minimize the risk of hydrogen embrittlement. It is intended to control the process. Hydrogen embrittlement of steel, which can cause brittle fractures under stress, occurs as a result of the absorption of hydrogen during cleaning, phosphate coating and plating processes. The susceptibility to hydrogen embrittlement increases with increasing stress (internal or externally applied stress) and increasing material strength. Hardness readings in this specification are in Vickers scale. SAE J417 should be referred to for conversion to other scales.
Standard

COAXIAL CABLE CONNECTOR INTERFACE – SQUARE OUTER CONDUCTOR

2003-03-10
HISTORICAL
USCAR19-1
This radio frequency (RF) connector interface specification is suited for unsealed automobile applications up to 2 GHz. Dimensional requirements are specified in this document to ensure interchangeability. This RF connector interface specification is intended for in-line, board mount, device mount, straight or angled applications. Performance requirements are specified in SAE/USCAR-2, and in SAE/USCAR-17.
Standard

DEEMBRITTLEMENT VERIFICATION TEST

2012-07-30
CURRENT
USCAR7-1
This standard outlines test methods and practices which can detect embrittlement of steel parts. It is a process control or referee verification test. The risk of embrittlement of steel is minimized by using best practices in the finishing/coating process. One such practice is described in SAE/USCAR-5, Avoidance of Hydrogen Embrittlement of Steel.
Standard

Deembrittlement Verification Test

1998-12-30
HISTORICAL
USCAR7
This standard outlines test methods and practices which can detect embrittlement of steel parts. It is a process control or referee verification test. The risk of embrittlement of steel is minimized by using best practices in the finishing/coating process. One such practice is described in SAE/USCAR-5, Avoidance of Hydrogen Embrittlement of Steel.
Standard

Dimensional and Performance Specification for After-Market Gasoline Engine Oil Filters

2013-01-30
CURRENT
USCAR36
This specification defines the dimensional and performance requirements for aftermarket spin-on oil filters intended for use on gasoline engines. Filters meeting this specification may also be suitable for use on some diesel applications. Filters meeting these dimensional limits are intended to meet the oil filter fit and package requirements for engine and vehicle designs. Filters meeting the performance requirements are intended to maintain sufficient durability to support many of the OEM's recommended oil change intervals. Some OEM engines may require special filters for which this specification would not support.
Standard

ELECTRICAL CONNECTOR ASSEMBLY ERGONOMIC DESIGN CRITERIA

2008-09-26
HISTORICAL
USCAR25-1
This document describes the design, assembly force, and packaging guidelines for conventional hand-plug, mechanical assist and twist lock electrical connectors, as well as Connector Position Assurances (CPAs). All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the-shelf” design, always consult the responsible Ergonomics Department. Refer to SAE/USCAR-12 Wiring Component Design Guidelines for additional guidelines.
Standard

ELECTRICAL CONNECTOR DESIGN CRITERIA

2016-02-12
HISTORICAL
USCAR12-4
This document gives specific and measurable design criteria to be applied at a design review prior to tooling. The specification is formatted as a checklist to aid in its use. The requirements do not apply in all situations so engineering judgment must be used. This is a specification for design criteria; applicable performance specifications (USCAR-2, etc.) must still be performed. Items in this document are grouped by component as follows: A Terminals B Secondary Terminal Locks C Connectors D Connector Locks E Secondary Connector Locks (Connector Position Assurance, CPA) F Connector Seals G Serviceability H High Voltage (≥60V) Application Requirements I Drawing and General Requirements
Standard

ERGONOMICS SPECIFICATION FOR ELECTRICAL CONNECTIONS

2016-03-10
CURRENT
USCAR25-3
This document decribes the deign relative to assembly force, and hand clearance guidelines for conventional hand-plug, mechanical assist and twist lock electrical connectors, as well as Connector Position Assurances (CPAs). The minimum values associated with this design guide need to be evaluated against other critical characteristics that impact quality, efficiency and other traits of assembly feasibility. all possible designs and appications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an "off-the'shelf" design, always consult the responsible Ergonomics Department.
Standard

Electrical Connector Assembly Ergonomic Design Criteria

2003-05-03
HISTORICAL
USCAR25
This document describes the design and assembly force guidelines for conventional and mechanical assist (lever and slide-lock) electrical connectors and CPA's. All possible designs and applications cannot be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an "off-the-shelf" design, always consult the responsible Ergonomics department. Refer to SAE/USCAR-12 Wiring Component Design Guidelines for additional guidelines.
Standard

Electrical Connector Design Criteria

2017-08-17
CURRENT
USCAR12-5
This document gives specific and measurable design criteria to be applied at a design review prior to tooling. The specification is formatted as a checklist to aid in its use. The requirements do not apply in all situations so engineering judgment must be used. This is a specification for design criteria; applicable performance specifications (USCAR-2, etc.) must still be performed
Standard

Ergonomic Guidelines for Carts and Dollies

2015-03-13
CURRENT
USCAR41
This document describes the assessment methods and physical requirements associated with the manual handling of carts and dollies, specific to material handling systems. All possible designs and applications could not be anticipated in creating these guidelines. Where there are questions of adherence to this document, such as use of an “off-the shelf” design, always consult the responsible Ergonomics Department. Force guidelines were primarily developed referencing the push/pull psychophysical Snook data contained in A Guide to Manual Materials Handling (second edition) by Mital, Nicholson and Ayoub (NY: Taylor & Francis, 1997). The force guidelines accommodate 75% of female capabilities and 99% of male capabilities. Factors that were included in the established guideline include: push / pull distances, vertical hand height, horizontal hand height, frequency and wheel / castor alignment and load rating. These factors were used to develop a conservative force guideline.
X