Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Fuzzy System to Determine the Vehicle Yaw Angle

2004-03-08
2004-01-1191
The reproduction of the vehicle motion is a crucial element of accident reconstruction. Apart from the position of the center of gravity in an inertial coordinate system, the vehicle heading plays an important role. The heading is the sum of the yaw angle and the vehicle body side slip angle. In standard vehicles, the yaw angle can be determined using the yaw rate sensor and the wheel speeds. However, the yaw rate sensor is often subject to temperature drift. The wheel speed signals are forged at low speeds or due to slip. These errors result in significant deviations of reconstructed and real vehicle heading. Therefore, an intelligent combination of these signals is required. This paper describes a fuzzy system which is capable to increase the accuracy of yaw angle calculation by means of fuzzy logic. Before the data is applied to the fuzzy system, it is preprocessed to ensure the accuracy of the fuzzy system inputs.
Technical Paper

Car Control by a Central Electronic System

1977-02-01
770001
Coordination and concentration of different electronic functions within a car with the objective of functional cooperation and, if possible, incorporation into a single package to reduce costs and improve reliability is discussed. The alternatives of a Special Purpose Computer or a General Purpose Realtime Computer are described with regard to available sensor technology.
Technical Paper

Evaluation of Shortest Path Algorithms in a Distributed Traffic Assignment Environment

2003-03-03
2003-01-0536
The increasing linkage of route guidance servers within the recent years leads to numerous efforts to split traffic assignment algorithms in an efficient way on these distributed computers. Especially in the field of intermodal services, i.e. calculating the fastest paths of certain origin-destination pairs with respect to different individual and public traffic services, solutions are required to implement the routing models in a fast, reliable way. Unfortunately, analysis of different realizations is commonly done by comparing the amount of necessary instructions O(·) in different net topologies. However, as computing power is in the meanwhile at a fairly high level, delay in a distributed environment can mainly be expected due to communication time. Dynamic calculations demand to transmit actual traffic conditions during several time periods, thus this paper examines the different routing strategies by evaluating the occuring message transmission time in common graph classes.
Technical Paper

Modeling and Simulation of Future Vehicle Powernets

2004-03-08
2004-01-1697
Future vehicle electrical systems will differ substantially from current ones due to rising requirements. For example driver-assistance and drive-by-wire systems will lead to novel and demanding electrical load profiles which in turn will pose new requirements on the electrical system. Furthermore safety concepts, reliability, availability and diagnosis are getting increasingly important in such systems and thus also in the vehicle's electrical system. In order to meet the upcoming requirements new concepts for future vehicle electrical systems have to be developed such that the new powernet is able to adapt flexibly to different situations or failures by routing the energy through different channels. For efficiency the corresponding development process should be based on modeling and simulation techniques. Depending on the design or analysis task, the powernet is represented through different modeling descriptions.
Technical Paper

On Reliable Communication and Group Membership in Safety-Relevant Automotive Electronic Systems

2007-04-16
2007-01-1715
As automotive systems are becoming increasingly distributed, communication between their components is becoming even more eminent. In safety-relevant distributed systems, the reliability of communication between nodes is crucial for the safety of a system. To guarantee such reliability, it is prerequisite that all nodes in the system have a consistent view of which nodes are functioning correctly and which are not (group membership). In this paper existing algorithms for ensuring group membership are presented and possible solutions for communication systems without such functionality, for example FlexRay, as well as a solution for a network based approach are outlined.
X