Refine Your Search

Topic

Search Results

Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2001-12-31
HISTORICAL
J2561_200112
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2016-11-08
CURRENT
J2561_201611
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

CLASS B DATA COMMUNICATION NETWORK INTERFACE

1990-07-01
HISTORICAL
J1850_199007
This SAE Recommended Practice establishes the requirements for a Class B Data Communication Network Interface applicable to all on and off-road land based vehicles. This document defines a minimum set of data communication requirements such that the resulting network is cost effective for simple applications and flexible enough to use in complex applications. Although this document addresses all seven layers of the OSI model, it primarily focuses on the Network, Data Link and Physical Layers. Taken in total, the requirements contained in this document specify a data communications network philosophy that satisfies the needs of automotive manufacturers. Although the higher layer OSI requirements are essentially identical for all networks defined by this document (see Section 3.3, Figure 1), differing data rate requirements necessitate the use of different physical layers.
Standard

CLASS B DATA COMMUNICATION NETWORK MESSAGES PART 2: DATA PARAMETER DEFINITIONS

1993-06-01
HISTORICAL
J2178/2_199306
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions-related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

CLASS B DATA COMMUNICATION NETWORK MESSAGES—MESSAGE DEFINITIONS FOR THREE BYTE HEADERS

1995-02-01
HISTORICAL
J2178/4_199502
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

CLASS B DATA COMMUNICATION NETWORK MESSAGES—PART 2: DATA PARAMETER DEFINITIONS

1997-05-01
HISTORICAL
J2178/2_199705
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Detailed Header Formats and Physical Address Assignments

2011-04-01
CURRENT
J2178/1_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 2: Data Parameter Definitions

2011-04-01
CURRENT
J2178/2_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 3 - Frame IDs for Single-Byte Forms of Headers

2011-05-02
CURRENT
J2178/3_201105
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

Class B Data Communication Network Messages—Message Definitions for Three Byte Headers

1999-03-11
HISTORICAL
J2178/4_199903
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages—Message Definitions for Three Byte Headers

2004-07-27
HISTORICAL
J2178/4_200407
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages—Part 2: Data Parameter Definitions

1999-03-11
HISTORICAL
J2178/2_199903
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class B Data Communication Network Messages—Part 2: Data Parameter Definitions

2004-07-27
HISTORICAL
J2178/2_200407
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte are given in SAE J1850.
Standard

GLOSSARY OF VEHICLE NETWORKS FOR MULTIPLEXING AND DATA COMMUNICATIONS

1991-06-01
HISTORICAL
J1213/1_199106
This SAE Information Report provides definition for terms (words and phrases) which are generally used within the SAE in describing network and data communication issues. In many cases, these definitions are different from those of the same or similar terms found in nonautomotive organizations, such as the Institute of Electrical and Electronic Engineers (IEEE). The Vehicle Networks for Multiplexing and Data Communications committee has found it useful to collect these specific terms and definitions into this document so documents related to the multiplexing and data communications issues will not need an extensive definitions section. This document is intended to be the central reference for terms and definitions related to multiplexing and data communications and as such is intended to apply equally to Passenger Car, Truck and Bus, and Construction and Agriculture organizations within SAE.
Standard

Glossary of Automotive Electronic Terms

1978-06-01
CURRENT
J1213_197806
This glossary has been compiled to serve for reference in an effort to assist communications between the automotive engineer and the electronics engineer. This Glossary confines its content to the specific field of electronic systems and subsystems as they pertain to the automotive engineer.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 250 kbps

2023-05-10
CURRENT
J2284/2_202305
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 250 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps

2022-10-07
CURRENT
J2284/3_202210
This SAE Recommended Practice will define the physical layer and portions of the data link layer of the open systems interconnection model (ISO 7498) for a 500 kbps high-speed CAN (HSC) protocol implementation. Both electronic control unit (ECU) and media design requirements for networks will be specified. Requirements will primarily address the controller area network (CAN) physical layer implementation. Requirements will focus on a minimum standard level of performance from the HSC implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the ECU requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 2 Mbps

2022-11-02
CURRENT
J2284/4_202211
This SAE Recommended Practice will define the physical layer and portions of the data link layer of the open systems interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD data at 2 Mbps high-speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the HSC implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD data at 2 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps

2022-11-02
CURRENT
J2284/5_202211
This SAE Recommended Practice will define the physical layer and portions of the data link layer of the open systems interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD data at 5 Mbps high-speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 5 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
Standard

LIN Network for Vehicle Applications

2012-11-19
HISTORICAL
J2602/1_201211
This document covers the requirements for SAE implementations based on LIN 2.0. Requirements stated in this document will provide a minimum standard level of performance to which all compatible ECUs and media shall be designed. This will assure full serial data communication among all connected devices regardless of supplier. The goal of SAE J2602-1 is to improve the interoperability and interchangeability of LIN devices within a network by resolving those LIN 2.0 requirements that are ambiguous, conflicting, or optional. Moreover, SAE J2602-1 provides additional requirements that are not present in LIN 2.0 (e.g., fault tolerant operation, network topology, etc.). This document is to be referenced by the particular vehicle OEM component technical specification that describes any given ECU in which the single wire data link controller and physical layer interface is located. Primarily, the performance of the physical layer is specified in this document.
X