Refine Your Search




Search Results

Technical Paper

100 Hour Endurance Testing of a High Output Adiabatic Diesel Engine

An advanced low heat rejection engine concept has successfully completed a 100 hour endurance test. The combustion chamber components were insulated with thermal barrier coatings. The engine components included a titanium piston, titanium headface plate, titanium cylinder liner insert, M2 steel valve guides and monolithic zirconia valve seat inserts. The tribological system was composed of a ceramic chrome oxide coated cylinder liner, chrome carbide coated piston rings and an advanced polyolester class lubricant. The top piston compression ring Included a novel design feature to provide self-cleaning of ring groove lubricant deposits to prevent ring face scuffing. The prototype test engine demonstrated 52 percent reduction in radiator heat rejection with reduced intake air aftercooling and strategic forced oil cooling.
Technical Paper

A Correction Factor Investigation of a Turbocharged Diesel Engine

The increased use of turbocharged diesel engines for automotive applications has accentuated the need for accurate power correction functions. The study's purpose was to evaluate the effect of dry ambient intake air pressure, ambient intake air temperature, engine speed, and humidity upon the performance of a turbocharged diesel engine. Each effect is examined individually and weighted in a final relationship for standardized horsepower. Power correction formulas, in a form readily comparable to typical correction functions, are derived from the results. Testing was conducted through the use of various special test procedures, calibrations, and test equipment. With computer aid, test evaluation was conducted by utilizing various analytical and graphical methods. An accuracy comparison between actual and calculated values of power correction is presented.
Technical Paper

A Large Scale Mixing Model for a Quiescent Chamber Direct Injection Diesel

The methodology for predicting the transient mixing rate is presented for a direct injection, quiescent chamber diesel. The mixing process is modeled as a zero-dimensional, large-scale phenomena which accounts for injection rate, cylinder geometry, and engine operating condition. As a demonstration, two different injection schemes were investigated for engine speeds of 1600, 2100, and 2600 rpm. In the first case, the air-fuel ratio was fixed while the injection rate was allowed to vary, but for the second case, the injection duration was fixed and the air-fuel ratio was allowed to vary. For the former case, the resulting mixing rate was also compared with the experimentally determined fuel burning rate. These two quantities appeared to be correlated in some manner for the various engine speeds under investigation.
Technical Paper

A New Ignition Delay Formulation Applied to Predict Misfiring During Cold Starting of Diesel Engines

A new formulation is developed for the ignition delay (ID) in diesel engines to account for the effect of piston motion on the global autoignition reaction rates. A differentiation is made between the IDe measured in engines and IDv, measured in constant volume vessels. In addition, a method is presented to determine the coefficients of the IDe correlation from actual engine experimental data. The new formulation for IDe is applied to predict the misfiring cycles during the cold starting of diesel engines at different low ambient temperatures. The predictions are compared with experimental results obtained on a multi-cylinder heavy-duty diesel engine.
Technical Paper

A Simplified Analytical Methodology for Selecting Element Density for Low Heat Rejection Diesel Heat Thermal Analysis

The authors have conducted extensive finite element (FE) thermal and stress analysis on the heads of low heat rejection diesel engines. Throughout these analyses, model mesh construction was based on conventional rule-of-thumb criteria. In this paper a simple analytical methodology is presented for selecting a mesh to conduct thermal analysis. This is intended to remove some of the arbitrary appearance of these prior meshes. Results of the FE thermal solution based on a mesh using this methodology is compared to a known convergent FE thermal solution.
Technical Paper

A Simplified Friction Model of the Piston Ring Assembly

This paper presents a simplified piston ring assembly (PRA) friction model accounting for the piston ring pack and the piston skirt. The ring model considers both mixed and hydrodynamic lubrication; the skirt model considers hydrodynamic lubrication only. The Reynold's equation is used as a governing equation for the hydrodynamic regimes of both models. Simplified assumptions are used for the mixed lubrication in the ring model. The ring model generates unique Stribeck curves for a given ring's geometry; the skirt model generates generic relationships between the friction force and skirt geometry, piston speed, oil viscosity, and assumed boundary conditions. Ring starvation effects are introduced by varying the boundary conditions, as appropriate. The results of the models are compared to measurements made on a motored and fired single cylinder diesel engine; the theoretical calculations provide a reasonable estimate of the measured data.
Technical Paper

Adiabatic Engine Trends-Worldwide

Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
Technical Paper

Adiabatic Turbocompound Engine Performance Prediction

The contemporary turbocharged aftercooled diesel engine is providing the world with one of the most efficient and dependable powerplants known to mankind. An adiabatic turbocompound diesel engine is analyzed in this paper to demonstrate that the contemporary diesel cycle without a cooling system could be the beginning of a new era in continued diesel engine efficiency, reliability and durability. The problems with the diesel cooling system encountered in service are presented. The consequence of an adiabatic turbocompound engine without any cooling system is treated for engine performance.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

Advances in High Temperature Components for the Adiabatic Engine

An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

An Investigation of the Effects of Node Density on Finite Element Thermal/Stress Analysis as Applied to Low Heat Rejection Diesel Heads

In our prior analytical work concerning a finite element methodology for thermal stress analysis of minimum cooled low heat rejection (LHR) engine cylinder heads, a very fine mesh with strict aspect ratio and element density criteria was used. In this current study, these criteria were relaxed and two other finite element models with different element densities were used to solve the same thermal stress problem. The thermal and stress results of the relaxed models are compared to those of the earlier very fine mesh results. It is the aim of this paper to show in a semi-quantified manner, how mesh density can affect thermal stress solutions in LHR engine heads. Hopefully this will enable other analysts working in this area to make some judgement on mesh density before starting an actual modelling effort, resulting in a savings of time and manpower resources.
Technical Paper

Analysis of Current Spray Penetration Models and Proposal of a Phenomenological Cone Penetration Model

A phenomenological zero-dimensional spray penetration model was developed for diesel-type conditions for a constant volume chamber. The spray was modeled as a protruding cone which is well-mixed at its tip after passing through initial primary and secondary breakup zones. The resulting cone model is strictly dependent on injection parameters; density ratio, injection and chamber pressure, nozzle characteristics, and cone angle. The proposed model was compared with data from three different sources and performed well in most cases except for low density environments.
Technical Paper

Assessment of Thin Thermal Barrier Coatings for I.C. Engines

This paper investigates theoretically the effects of heat transfer characteristics, such as crank-angle phasing and wall temperature swings, on the thermodynamic efficiency of an IC engine. The objective is to illustrate the fundamental physical basis of applying thin thermal barrier coatings to improve the performance of military and commercial IC engines. A simple model illustrates how the thermal impedance and thickness of coatings can be manipulated to control heat transfer and limit the high temperatures in engine components. A friction model is also included to estimate the overall improvement in engine efficiency by the proper selection of coating thickness and material.
Technical Paper

Ceramics in Heat Engines

Recent developments of high performance ceramics have given a new impetus for the advancement of heat engines. The thermal efficiencies of the Otto, Diesel, Brayton and the Stirling cycle can now be improved by higher operating temperatures, reduced heat loss, and exhaust energy recovery. Although physical and chemical properties of the high performance ceramics have been improved significantly, they still fall short of meeting the requirements necessary for application and commercialization of advanced heat engine concepts. Aside from the need for greater strength, the problems of consistency, quality, design, material inspection, insulative properties, oxidation and other important features must be solved before high performance ceramics can be considered a viable material for advanced heat engines. Several approaches in developing an adiabatic engine design in the laboratory are shown.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Technical Paper

Closed Loop Control Using Ion Current Signal in a Diesel Engine

Signals indicative of in-cylinder combustion have been under investigation for the control of diesel engines to meet stringent emission standards and other production targets in performance and fuel economy. This paper presents the results of an investigation on the use of the ion current signal for the close loop control of a heavy duty four cylinder turbocharged diesel engine equipped with a common rail injection system. A correlation is developed between the start of ion current signal (SIC) and the location of the peak of premixed combustion (LPPC) in the rate of heat release trace. Based on this correlation, a PID closed loop controller is developed to adjust the injection timing for proper combustion phasing under steady and transient engine operating conditions.
Technical Paper

Coatings for Improving Engine Performance

Thermal barrier coatings are becoming increasingly important in providing thermal insulation for heat engine components. Thermal insulation reduces in-cylinder heat transfer from the engine combustion chamber as well as reducing component structural temperatures. Containment of heat also contributes to increased in-cylinder work and offers higher exhaust temperatures for energy recovery. Lower component structural temperatures will result in greater durability. Advanced ceramic composite coatings also offer the unique properties that can provide reductions in friction and wear. Test results and analysis to evaluate the performance benefits of thin thermal barrier coated components in a single cylinder diesel engine are presented.
Technical Paper

Combustion Visualization of DI Diesel Spray Combustion inside a Small-Bore Cylinder under different EGR and Swirl Ratios

An experimental setup using rapid compression machine to provide excellent optical access to visualize simulated high-speed small-bore direct injection diesel engine combustion processes is described. Typical combustion visualization results of diesel spray combustion under different EGR, swirl, and injection pressure and nozzle conditions are presented. Different swirl intensities are achieved using an air nozzle with variable orientations and a check valve to connect the compression chamber and the combustion chamber. Different EGR ratios are achieved by pre-injection of diesel fuel prior to the main observation sequence. Clear visualization of the high-pressure fuel injection, ignition, combustion and spray/wall/swirl interactions is obtained. The injection system is a high-pressure common-rail system with either a VCO or a mini-sac nozzle. High-speed movies up to 35,000 frame-per-second are taken using a framing drum camera to record the combustion events.