Refine Your Search

Topic

Search Results

Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Journal Article

A Study of Low Speed Preignition Mechanism in Highly Boosted SI Gasoline Engines

2015-09-01
2015-01-1865
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

A Study of the Mechanism of High-Speed Knocking in a Two-Stroke SI Engine with High Compression Ratio

2023-10-24
2023-01-1824
Experimental methods and numerical analysis were used to investigate the mechanism of high-speed knocking that occurs in small two-stroke engines. The multi-ion probe method was used in the experiments to visualize flame propagation in the cylinder. The flame was detected by 14 ion probes grounded in the end gas region. A histogram was made of the order in which flames were detected. The characteristics of combustion in the cylinder were clarified by comparing warming up and after warming up and by extracting the features of the cycle in which knocking occurred. As a result, regions of fast flame propagation and regions prone to auto-ignition were identified. In the numerical analysis, flow and residual gas distribution in the cylinder, flame propagation and self-ignition were visualized by 3D CFD using 1D CFD calculation results as boundary conditions and initial conditions.
Technical Paper

A Study on New Combustion Method of High Compression Ratio Spark Ignition Engine

2005-04-11
2005-01-0240
A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve higher thermal efficiency of SI engine comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism are studied to avoid knocking with high compression ratio. Since reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to high heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adopted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving higher thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in the simulations.
Technical Paper

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-04-20
2009-01-0496
The objective of this study is to extend the high load operation limit of a gasoline HCCI engine. A new system extending the high load HCCI operation limit was proposed, and the performance of the system was experimentally demonstrated. The proposed system consists of two new techniques. The first one is the “Blow-down super charging (BDSC) system”, in which, EGR gas can be super charged into a cylinder during the early stage of compression stroke by using the exhaust blow-down pressure wave from another cylinder phased 360 degrees later/earlier in the firing order. The other one is “EGR guide” for generating a large thermal stratification inside the cylinder to reduce the rate of in-cylinder pressure rise (dP/dθ) at high load HCCI operation. The EGR guides consist of a half-circular part attached on the edge of the exhaust ports and the piston head which has a protuberant surface to control the mixing between hot EGR gas and intake air-fuel mixture.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Analysis of Mixture Formation Process in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

2002-10-29
2002-32-1774
A reverse uniflow-type two-stroke gasoline direct injection engine, which has potentials of high power weight ratio, high thermal efficiency and low exhaust gas emissions, has been developed and tested. In this study, one of the features of this engine: very low cycle-to-cycle combustion variation at idling condition, is focused to clarify the reasons. To achieve this, a transparent cylinder model engine was designed and built to visualize the in-cylinder mixture formation process, and the free spray characteristics of a swirl-type injector were examined using a large chamber with changing the injection pressure, environmental gas pressure, and the gas temperature. As a result, the reasons of stable idling operation were deduced.
Technical Paper

Application of Porous Material as Heat Storage Medium to a Turbocharged Gasoline Engine

2020-01-24
2019-32-0541
Porous materials, which have large surface areas, have been used for heat storage. However, porous Si-SiC material, as heat storage medium to be applied to a turbocharged gasoline engine has not been investigated extensively. In this study, porous Si-SiC material was used in the upstream of the turbine as heat storage medium and a model was thereby developed for further study. Substrate surface area and substrate volume of Si-SiC were calculated for structure model calibration. Following these calculations and test results, the pressure loss and thermal model were validated. Results show that the weaken exhaust gas pulsation amplitude by porous Si-SiC leads to better turbine performance and BSFC in steady engine condition for a turbocharged gasoline engine. In addition, its transient operation response needs to be improved under transient engine conditions. Hence the possibility of improving the transient response is investigated with characteristics of porous Si-SiC material.
Journal Article

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Application to a SI Engine

2009-04-20
2009-01-0505
A newly developed small-sized IES (inductive energy storage) circuit with semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. Experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. The ignition system using repetitive nanosecond pulse discharges was found to improve inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses. The authors seek for the mechanisms for improving the inflammability in more detail to optimize ignition system, and verify the effectiveness of IES circuit in EGR condition, for real engine use.
Technical Paper

Effect of Active Piston-Movement Control on Thermal Efficiency in Different Heat Release Profiles

2005-10-12
2005-32-0067
In order to improve thermal efficiency of spark ignition engines, the authors have studied means to improve degree of constant volume. The ideal Otto cycle realizes the maximal degree of constant volume with an instantaneous combustion at TDC. However, it is actually impossible to achieve instantaneous combustion as the combustion speed is limited. Thereby, the authors thought of an idea to increase degree of constant volume. That is to make the piston speed slow during combustion period by active piston-movement control, allowing more time for combustion. As a result, degree of constant volume was improved, but indicated thermal efficiency, estimated by integrating P-V diagram, was deteriorated. A longer expansion stroke was found to keep a longer period of high temperature and then, heat loss increased, leading to a decrease in indicated work.
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Technical Paper

Effect of the Ratio Between Connecting-rod Length and Crank Radius on Thermal Efficiency

2006-11-13
2006-32-0098
In reciprocating internal combustion engines, the Otto cycle indicates the best thermal efficiency under a given compression ratio. To achieve an ideal Otto cycle, combustion must take place instantaneously at top dead center, but in fact, this is impossible. Meanwhile, if we allow slower piston motion around top dead center, combustion will be promoted at that period; then both the in-cylinder pressure and degree of constant volume will increase, leading to higher thermal efficiency. In order to verify this hypothesis, an engine with slower piston motion around top dead center, using an ideal constant volume combustion engine, was built and tested. As anticipated, the degree of constant volume increased. However, thermal efficiency was not improved, due to increased heat loss.
Technical Paper

Effects of Coolant Temperature and Fuel Properties on Soot Emission from a Spark-ignited Direct Injection Gasoline Engine

2019-12-19
2019-01-2352
Effects of measurement method, coolant temperature and fuel composition on soot emissions were examined by engine experiments. By reducing the pressure fluctuation in the sampling line, the measured soot emissions with better stability and reproducibility could be obtained. With lower coolant temperatures, larger soot emissions were yielded at much advanced fuel injection timings. Compared to gasoline, soot emissions with a blend fuel of normal heptane, isooctane and toluene were significantly decreased, suggesting the amounts of aromatic components (toluene or others) should be increased to obtain a representative fuel for the predictive model of particulate matter in SIDI engines.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part 2 Characteristics of Structure’s Exciting Force and Overall Research Summary

2023-05-08
2023-01-1146
Following Part 1 of the previous study, this paper reports the structure’s exciting force and summarize the overall research results. An experimental study was conducted to clarify the relationship between engine combustion and vibration, and to establish technology to suppress it. This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the structure’s exciting force characteristics for vibration in cycle-by-cycle. Analysis was conducted using the combustion indicators clarified in the previous study.
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

2010-04-12
2010-01-0173
A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.
Technical Paper

Fuel Stratification Using Twin-Tumble Intake Flows to Extend Lean Limit in Super-Lean Gasoline Combustion

2018-09-10
2018-01-1664
To drastically improve thermal efficiency of a gasoline spark-ignited engine, super-lean burn is a promising solution. Although, studies of lean burn have been made by so many researchers, the realization is blocked by a cycle-to-cycle combustion variation. In this study, based on the causes of cycle-to-cycle variation clarified by the authors’ previous study, a unique method to reduce the cycle-to-cycle variation is proposed and evaluated. That is, a bulk quench at early expansion stroke could be reduced by making slight fuel stratification inside the cylinder using the twin-tumble of intake flows. As a result, the lean limit was extended with keeping low NOx and moderate THC emissions, leading to higher thermal efficiency.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Investigation of Breakup Modeling of a Diesel Spray by Making Comparisons with 2D Measurement Data

2007-07-23
2007-01-1898
In this study, the characteristics of diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method on a 2D plane to evaluate the droplet breakup modeling. In numerical analysis, DDM (Discrete Droplet Model) was employed with sub-models such as droplet breakup, droplet drag force and turbulence. Experiments have been performed with an accumulator type unit-injector system and a constant-volume high-pressure vessel under the condition of quiescent ambient gas. The injection pressure and ambient gas pressure were set up to 100 MPa and 0.1 / 1 MPa, respectively. The nozzle orifice diameter was 0.244 mm with a single hole. The measurement region was chosen at 40 ∼ 60 mm from the nozzle-tip. Numerical analysis of diesel sprays was conducted and the results were compared to the measured results.
X