Refine Your Search

Topic

Search Results

Journal Article

A Comparison of EGR Correction Factor Models Based on SI Engine Data

2019-03-27
Abstract The article compares the accuracy of different exhaust gas recirculation (EGR) correction factor models under engine conditions. The effect of EGR on the laminar burning velocity of a EURO VI E10 specification gasoline (10% Ethanol content by volume) has been back calculated from engine pressure trace data, using the Leeds University Spark Ignition Engine Data Analysis (LUSIEDA) reverse thermodynamic code. The engine pressure data ranges from 5% to 25% EGR (by mass) with the running conditions, such as spark advance and pressure at intake valve closure, changed to maintain a constant engine load of 0.79 MPa gross mean effective pressure (GMEP). Based on the experimental data, a correlation is suggested on how the laminar burning velocity reduces with increasing EGR mass fraction.
Journal Article

A Contribution to Improving the Thermal Management of Powertrain Systems

2019-10-08
Abstract This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
Journal Article

A Novel Laminar Flame Speed Correlation for the Refinement of the Flame Front Description in a Phenomenological Combustion Model for Spark-Ignition Engines

2019-04-25
Abstract This work focuses on the effects of the laminar flame speed (LFS) and flame stretch on the phenomenological modeling of the combustion process in spark ignition engines. The study is carried out using a 1D model of a small-size naturally aspirated SI engine, equipped with an external EGR circuit. The model, developed in GT-Power™ environment, includes advanced sub-models of the in-cylinder processes. The combustion is modeled using a fractal approach, where the burning rate is directly related to the laminar flame speed. A novel LFS correlation based on 1D chemical kinetics computations is presented and assessed with the experimentally derived Metghalchi and Keck correlation. Moreover, the effects of the flame stretch, evaluated according to an asymptotic theory, are properly considered in the combustion model.
Journal Article

A Predictive Tool to Evaluate Braking System Performance Using Thermo-Structural Finite Element Model

2019-10-14
Abstract The braking phenomenon is an aspect of vehicle stopping performance where with kinetic energy due to the speed of the vehicle is transformed into thermal energy produced by the brake disc and its pads. The heat must then be dissipated into the surrounding structure and into the airflow around the brake system. The thermal friction field during the braking phase between the disc and the brake pads can lead to excessive temperatures. In our work, we presented numerical modeling using ANSYS software adapted in the finite element method (FEM), to follow the evolution of the global temperatures for the two types of brake discs, full and ventilated disc during braking scenario. Also, numerical simulation of the transient thermal analysis and the static structural analysis were performed here sequentially, with coupled thermo-structural method.
Journal Article

A Refined 0D Turbulence Model to Predict Tumble and Turbulence in SI Engines

2018-11-19
Abstract In this work, the refinement of a phenomenological turbulence model developed in recent years by the authors is presented in detail. As known, reliable information about the underlying turbulence intensity is a mandatory prerequisite to predict the burning rate in phenomenological combustion models. The model is embedded under the form of “user routine” in the GT-Power™ software. The main advance of the proposed approach is the potential to describe the effects on the in-cylinder turbulence of some geometrical parameters, such as the intake runner orientation, the compression ratio, the bore-to-stroke ratio, and the valve number. The model is based on three balance equations, referring to the mean flow kinetic energy, the tumble vortex momentum, and the turbulent kinetic energy (3-eq. concept). An extended formulation is also proposed, which includes a fourth equation for the dissipation rate, allowing to forecast also the integral length scale (4-eq. concept).
Journal Article

A Wind-Tunnel Investigation of the Influence of Separation Distance, Lateral Stagger, and Trailer Configuration on the Drag-Reduction Potential of a Two-Truck Platoon

2018-06-13
Abstract A wind-tunnel study was undertaken to investigate the drag reduction potential of two-truck platooning, in the context of understanding some of the factors that may influence the potential fuel savings and greenhouse-gas reductions. Testing was undertaken in the National Research Council Canada 2 m × 3 m Wind Tunnel with two 1/15-scale models of modern aerodynamic tractors paired with dry-van trailers configured with and without combinations of side-skirts and boat-tails. Separation distances of 0.14, 0.28, 0.49, 0.70 and 1.04 vehicle lengths were tested (3 m, 6 m, 10.5 m, 15 m, and 22.5 m full scale). Additionally, within-lane lateral offsets up to 0.31 vehicle widths (0.8 m full scale) were evaluated, along with a full-lane offset of 1.42 vehicle widths (3.7 m full scale). This study has made use of a wind-averaged-drag coefficient as the primary metric for evaluating the effect of vehicle platooning.
Journal Article

An Approach for Heavy-Duty Vehicle-Level Engine Brake Performance Evaluation

2019-01-08
Abstract An innovative analysis approach to evaluate heavy-duty vehicle downhill engine brake performance was developed. The vehicle model developed with GT-Drive simulates vehicle downhill control speeds with different engine brake retarding powers, transmission gears, and vehicle weights at sea level or high altitude. The outputs are then used to construct multi-factor parametric design charts. The charts can be used to analyze the vehicle-level engine brake capabilities or compare braking performance difference between different engine brake configurations to quantify the risk of engine retarding power deficiency at both sea level and high altitude downhill driving conditions.
Journal Article

Analysis of Evaporative and Exhaust-Related On-Board Diagnostic (OBD) Readiness Monitors and DTCs Using I/M and Roadside Data

2018-03-01
Abstract Under contract to the EPA, Eastern Research Group analyzed light-duty vehicle OBD monitor readiness and diagnostic trouble codes (DTCs) using inspection and maintenance (I/M) data from four states. Results from roadside pullover emissions and OBD tests were also compared with same-vehicle I/M OBD results from one of the states. Analysis focused on the evaporative emissions control (evap) system, the catalytic converter (catalyst), the exhaust gas recirculation (EGR) system and the oxygen sensor and oxygen sensor heater (O2 system). Evap and catalyst monitors had similar overall readiness rates (90% to 95%), while the EGR and O2 systems had higher readiness rates (95% to 98%). Approximately 0.7% to 2.5% of inspection cycles with a “ready” evap monitor had at least one stored evap DTC, but DTC rates were under 1% for the catalyst and EGR systems, and under 1.1% for the O2 system, in the states with enforced OBD programs.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Automated Driving Systems and Their Insertion in the Brazilian Scenario: A Test Track Proposal

2018-06-05
Abstract The conception of Automated Driving Systems is expanding fast with the expectation of the whole society and with heavy investments toward research and development. However, the insertion of these vehicles in real scenarios worldwide is still a challenge for governments, once they require an important evolution of the legal and regulatory framework. Although there are several initiatives to accelerate the insertion process, each country has specificities when considering the traffic scenario. In order to contribute to this emerging problem, this article presents a perspective of how the insertion of these vehicles can be performed considering specificities of the Brazilian scenario, one of the world's biggest car markets. Thus, it is discussed the global scenario of autonomous vehicles, the Brazilian traffic system, and the certification and homologation process, focusing on a new test track proposal.
Journal Article

Automotive Components Fatigue and Durability Testing with Flexible Vibration Testing Table

2018-04-07
Abstract Accelerated durability testing of automotive components has become a major interest for the ground vehicle Industries. This approach can predict the life characteristics of the vehicle by testing fatigue failure at higher stress level within a shorter period of time. Current tradition of laboratory testing includes a rigid fixture to mount the component with the shaker table. This approach is not accurate for the durability testing of most vehicle components especially for those parts connected directly with the tire and suspension system. In this work, the effects of the elastic support on modal parameters of the tested structure, such as natural frequencies, damping ratios and mode shapes, as well as the estimated structural fatigue life in the durability testing were studied through experimental testing and numerical simulations.
Journal Article

Bench Testing Validation of Wireless Power Transfer up to 7.7kW Based on SAE J2954

2017-10-08
Abstract Wireless Power Transfer (WPT) is presently being applied to consumer electronics in the low-power range and is planned to be commercialized in the high-power range for plug-in and electric vehicles in 2018. There are, however, many technology challenges remaining before widespread implementation of high-power WPT will occur. The SAE Vehicle Wireless Power and Alignment Taskforce published the Technical Information Report J2954 in 2016 to help harmonize the first phase of high-power WPT technology development. SAE J2954 adopts a performance-based approach to standardizing WPT by specifying ground and assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies for SAE TIR J2954.
Journal Article

CFD and Wind Tunnel Analysis of the Drag on a Human-Powered Vehicle Designed for a Speed Record Attempt

2019-06-07
Abstract A computational fluid dynamics (CFD) and wind tunnel investigation of a human powered vehicle (HPV), designed by the Velo Racing Team at Ostfalia University, is undertaken to analyse the Eco-body’s drag efficiency. Aimed at competing in a high profile HPV speed record competition, the vehicle’s aerodynamic efficiency is shown to compare well with successful recent eco-body designs. Despite several limitations, newly obtained wind tunnel data shows that the corresponding CFD simulations offer an effective tool for analysing and refining the HPV design. It is shown that, in particular, the design of the rear wheel fairings, as well as the ride height of the vehicle, may be optimised further. In addition, refinements to the CFD and wind tunnel methodologies are recommended to help correlation.
Journal Article

Carbon Monoxide Density Pattern Mapping from Recreational Boat Testing

2018-10-04
Abstract Exposure to carbon monoxide (CO) gas can cause health risks for users of recreational boats and watercraft. Activities such as waterskiing, wakeboarding, tubing, and wakesurfing primarily utilize gasoline engine-driven vessels which produce CO as a combustion by-product. Recent watersports trends show an increase in popularity of activities which take place closer to the stern of the boat (such as wakesurfing) as compared to traditional waterskiing and wakeboarding. Advancements in gas emissions treatment in marine engine exhaust system designs have reduced risks for CO exposure in some boats. This article presents results from on-water testing of three recreational boats, reports average and maximum values of CO levels under various conditions, and exhibits mapping of the density of CO relative to the stern of the test vessels.
Journal Article

Characterization of Low Temperature Reactions in the Standard Cooperative Fuel Research (CFR) Engine

2019-09-24
Abstract Up to date many proposals for the fuel rating in the spark ignition (SI) engine have been suggested and there is still no consensus on this and the industry is still using RON and MON tests to rate the fuels and there is a need to come up with new fuel rating system. The fuel’s knocking tendency in SI engines is primarily governed by the end-gas autoignition. Another combustion mode, homogeneous charge compression ignition (HCCI), is also driven by autoignition of the complete charge inside the cylinder. Fundamentally, the combustion process in both combustion modes is driven by autoignition, and HCCI combustion mode can be used to understand the knocking behavior in SI engines.
Journal Article

Comparative Performance of 12 Crankcase Oil Mist Separators

2018-10-31
Abstract Closed crankcase ventilation (CCV) systems are required in most automotive markets in order to meet emissions regulations. Such systems usually require a separator to recover oil and return it to the sump. Many end users fit improved separators in order to reduce intake/aftercooler contamination with soot/oil. This study measured clean and wet pressure drop and filter capture efficiency in 12 different crankcase oil mist separators which are commonly used for either original equipment (OE) or aftermarket fitment to passenger vehicles and four-wheel drives (≤200 kW). The filters tested spanned three different size/rating classes as well as included both branded and unbranded (imitation) models. In addition to filters, separators (often termed “catch cans”) and an OE cyclone separator were also examined. Testing was performed under controlled laboratory conditions using methods equivalent to previous work and current mist filter test standards.
Journal Article

Comparison of Regulated and Unregulated Emissions and Fuel Economy of SI Engines with Three Fuels: RON95, M15, and E10

2019-10-04
Abstract This article focuses on a comparative research of the emissions discharged from four vehicles equipped with SI engines, which comply with different emission control systems (Euro 6, Euro 5, and Euro 3). The vehicles used for this work were installed with two different fuel injection technologies (direct injection and port fuel injection) and were operated with three different types of fuels (RON 95, M15, and E10). The tests were performed at the Joint Research Center (JRC) in Ispra using a state-of-the-art emissions test facility according to the European emissions legislation. The test bench included a chassis dynamometer and two different driving cycles were used: NEDC and US06.
Journal Article

Design of High-Lift Airfoil for Formula Student Race Car

2018-12-05
Abstract A two-dimensional model of three elements, high-lift airfoil, was designed at a Reynolds number of ?????? using computational fluid dynamics (CFD) to generate downforce with good lift-to-drag efficiency for a formula student open-wheel race car basing on the nominal track speeds. The numerical solver uses the Reynolds-averaged Navier-Stokes (RANS) equation model coupled with the Langtry-Menter four-equation transition shear stress transport (SST) turbulence model. Such model adds two further equations to the ?? − ?? SST model resulting in an accurate prediction for the amount of flow separation due to adverse pressure gradient in low Reynolds number flow. The ?? − ?? SST model includes the transport effects into the eddy-viscosity formulation, whereas the two equations of transition momentum thickness Reynolds number and intermittency should further consider transition effects at low Reynolds number.
Journal Article

Detection Method for Cavity Defects in Ballastless Track Structures of High-Speed Railways Based on Air-Coupled Ultrasonic Lamb Waves

2019-07-02
Abstract This study proposes a method for the rapid detection and location of cavity defects in ballastless track structures of high-speed railways in service. First, the propagation law of air-coupled ultrasonic Lamb waves in the ballastless track structure is studied. Theoretical calculation results show that the ultrasonic Lamb wave group velocity of the A2 mode in the track plate is 4000 m/s. Then, the excitation and reception methods of the air-coupled ultrasound are studied. Theoretical and experimental results show that the A2 mode Lamb wave can be generated by the 3.8° oblique incidence of the ballastless track structure. Finally, an experimental system for air-coupled ultrasonic testing is constructed. A pair of air-coupled ultrasonic probes is used to provide excitation and reception Lamb wave signals at an inclined angle of 3.8°, 20 mm away from the surface of the track plate, and 40 mm/step along the scanning direction.
Journal Article

Developing a Standardized Performance Evaluation of Vehicles with Automated Driving Features

2019-08-21
Abstract Objectives: The project goal was to create an initial set of standardized tests to explore whether they enable the ongoing evaluation of automated driving features as they evolve over time. These tests focused on situations that were representative of several daily driving scenarios as encountered by lower-level automated features, often called Advanced Driver Assistance Systems (ADAS), while looking forward to higher levels of automation as new systems are deployed. Methods: The research project initially gathered information through a review of existing literature about ADAS and current test procedures. Thereafter, a focus group of industry experts was convened for additional insights and feedback. With this background, the research team developed a series of tests designed to evaluate a variety of automated driving features in currently available implementations and anticipated future variants.
X