Refine Your Search

Topic

Search Results

Journal Article

3D-Printed Antenna Design Using Graphene Filament and Copper Tape for High-Tech Air Components

2022-11-25
Abstract Additive manufacturing (AM) technologies can produce lighter parts; reduce manual assembly processes; reduce the number of production steps; shorten the production cycle; significantly reduce material consumption; enable the production of prostheses, implants, and artificial organs; and produce end-user products since it is used in many sectors for many reasons; it has also started to be used widely, especially in the field of aerospace. In this study, polylactic acid (PLA) was preferred for the antenna substrate because it is environmentally friendly, easy to recycle, provides convenience in production design with a three-dimensional (3D) printer, and is less expensive compared to other available materials. Copper (Cu) tape and graphene filament were employed for the antenna patch component due to their benefits.
Journal Article

A Bibliographical Review of Electrical Vehicles (xEVs) Standards

2018-04-18
Abstract This work puts presents an all-inclusive state of the art bibliographical review of all categories of electrified transportation (xEVs) standards, issued by the most important standardization organizations. Firstly, the current status for the standards by major organizations is presented followed by the graphical representation of the number of standards issued. The review then takes into consideration the interpretation of the xEVs standards developed by all the major standardization organizations across the globe. The standards are differentiated categorically to deliver a coherent view of the current status followed by the explanation of the core of these standards. The ISO, IEC, SAE, IEEE, UL, ESO, NTCAS, JARI, JIS and ARAI electrified transportation vehicles xEV Standards from USA, Europe, Japan, China and India were evaluated. A total approximated of 283 standards in the area have been issued.
Journal Article

A Comparative Study of Longitudinal Vehicle Control Systems in Vehicle-to-Infrastructure Connected Corridor

2023-11-16
Abstract Vehicle-to-infrastructure (V2I) connectivity technology presents the opportunity for vehicles to perform autonomous longitudinal control to navigate safely and efficiently through sequences of V2I-enabled intersections, known as connected corridors. Existing research has proposed several control systems to navigate these corridors while minimizing energy consumption and travel time. This article analyzes and compares the simulated performance of three different autonomous navigation systems in connected corridors: a V2I-informed constant acceleration kinematic controller (V2I-K), a V2I-informed model predictive controller (V2I-MPC), and a V2I-informed reinforcement learning (V2I-RL) agent. A rules-based controller that does not use V2I information is implemented to simulate a human driver and is used as a baseline. The performance metrics analyzed are net energy consumption, travel time, and root-mean-square (RMS) acceleration.
Journal Article

A Comprehensive Risk Management Approach to Information Security in Intelligent Transport Systems

2021-05-05
Abstract Connected vehicles and intelligent transportation systems are currently evolving into highly interconnected digital environments. Due to the interconnectivity of different systems and complex communication flows, a joint risk analysis for combining safety and security from a system perspective does not yet exist. We introduce a novel method for joint risk assessment in the automotive sector as a combination of the Diamond Model, Failure Mode and Effects Analysis (FMEA), and Factor Analysis of Information Risk (FAIR). These methods have been sequentially composed, which results in a comprehensive risk management approach to information security in an intelligent transport system (ITS). The Diamond Model serves to identify and structurally describe threats and scenarios, the widely accepted FMEA provides threat analysis by identifying possible error combinations, and FAIR provides a quantitative estimation of probabilities for the frequency and magnitude of risk events.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

A Literature Review of Simulation Fidelity for Autonomous-Vehicle Research and Development

2023-05-25
Abstract This article explores the value of simulation for autonomous-vehicle research and development. There is ample research that details the effectiveness of simulation for training humans to fly and drive. Unfortunately, the same is not true for simulations used to train and test artificial intelligence (AI) that enables autonomous vehicles to fly and drive without humans. Research has shown that simulation “fidelity” is the most influential factor affecting training yield, but psychological fidelity is a widely accepted definition that does not apply to AI because it describes how well simulations engage various cognitive functions of human operators. Therefore, this investigation reviewed the literature that was published between January 2010 and May 2022 on the topic of simulation fidelity to understand how researchers are defining and measuring simulation fidelity as applied to training AI.
Journal Article

A New Approach of Antiskid Braking System (ABS) via Disk Pad Position Control (PPC) Method

2020-10-15
Abstract A classical antiskid brake system (ABS) is typically used to control the brake fluid pressure by creating repeated cycles of decreasing and increasing brake force to avoid wheel locking, causing the fluctuation of the brake hydraulic pressure and resulting in vibration during wheel rotation. This article proposes a new approach of skid control for ABS by controlling the disk pad position. This new approach involves using a modest control method to determine the optimal skid that allows the wheel to exert maximum friction force for decelerating the vehicle by shifting the brake pad position instead of modulating the brake fluid pressure. This pad position control (PPC) method works in a continuous manner. Therefore, no rapid changes are required in the brake pressure and wheel rotation speed. To identify the PPC braking performance, braking test simulations and experiments have been carried out.
Journal Article

A Nonlinear Model Predictive Control Design for Autonomous Multivehicle Merging into Platoons

2021-10-25
Abstract Integrated control for automated vehicles in platoons with nonlinear coupled dynamics is developed in this article. A nonlinear MPC approach is used to address the multi-input multi-output (MIMO) nature of the problem, the nonlinear vehicle dynamics, and the platoon constraints. The control actions are determined by using model-based prediction in conjunction with constrained optimization. Two distinct scenarios are then simulated. The first scenario consists of the multivehicle merging into an existing platoon in a controlled environment in the absence of noise, whereas the effects of external disturbances, modeling errors, and measurement noise are simulated in the second scenario. An extended Kalman filter (EKF) is utilized to estimate the system states under the sensor and process noise effectively.
Journal Article

A Novel Fitting Method of Electrochemical Impedance Spectroscopy for Lithium-Ion Batteries Based on Random Mutation Differential Evolution Algorithm

2021-10-28
Abstract Electrochemical impedance spectroscopy (EIS) is widely used to diagnose the state of health (SOH) of lithium-ion batteries. One of the essential steps for the diagnosis is to analyze EIS with an equivalent circuit model (ECM) to understand the changes of the internal physical and chemical processes. Due to numerous equivalent circuit elements in the ECM, existing parameter identification methods often fail to meet the requirements in terms of identification accuracy or convergence speed. Therefore, this article proposes a novel impedance model parameter identification method based on the random mutation differential evolution (RMDE) algorithm. Compared with methods such as nonlinear least squares, it does not depend on the initial values of the parameters. The method is compared with chaos particle swarm optimization (CPSO) algorithm and genetic algorithm (GA), showing advantages in many aspects.
Journal Article

A Novel Metaheuristic for Adaptive Signal Timing Optimization Considering Emergency Vehicle Preemption and Tram Priority

2019-09-24
Abstract In this article, a novel hybrid metaheuristic based on passing vehicle search (PVS) cultural algorithm (CA) is proposed. This contribution has a twofold aim: First is to present the new hybrid PVS-CA. Second is to prove the effectiveness of the proposed algorithm for adaptive signal timing optimization. For this, a system that can adapt efficiently to the real-time traffic situation based on priority signal control is developed. Hence, Transit Signal Priority (TSP) techniques have been used to adjust signal phasing in order to serve emergency vehicles (EVs) and manage the tram priority in a coordinated tram intersection. The system used in this study provides cyclic signal operation based on a real-time control approach, including an optimization process and a database to manage the sensor data from detectors for real-time predictions of EV and tram arrival time.
Journal Article

A Reinforcement Learning Algorithm for Speed Optimization and Optimal Energy Management of Advanced Driver Assistance Systems and Connected Vehicles

2021-08-25
Abstract This article describes the application of Reinforcement Learning (RL) with an embedded heuristic algorithm to a multi-objective hybrid vehicle optimization. A multi-objective optimization problem (MOP) is defined as a minimization of total energy consumption and trip time resulting from optimal control of vehicle speed over a known route. First, a computationally efficient heuristic optimization algorithm is formulated to solve the MOP for multiple traffic scenarios. Then, the off-line integration of RL is applied to the heuristic optimization algorithm process and utilized to solve the MOP. Finally, the online optimization capability of the machine learning algorithm is discussed, as well as its extension to the vehicle routing problem and the hybrid electric vehicle. The specific scenario investigated is where a generic vehicle begins a trip on a one-lane highway. The length of the highway and the number of vehicles and traffic signals on the road are generic as well.
Journal Article

A Review Paper on Recent Research of Noise and Vibration in Electric Vehicle Powertrain Mounting System

2021-10-01
Abstract The Noise, Vibration, and Harshness (NVH) performance of automotive powertrain (PT) mounts involves the PT source vibration, PT mount stiffness, road input, and overall transfer path design. Like safety, performance, and durability driving dynamics, vehicle-level NVH also plays a major contributing factor for electric vehicle (EV) refinement. This article highlights the recent research on PT mounting-related NVH controls on electric cars. This work’s main contribution lies in the comparative study of the internal combustion engine (ICE)-based PT mounting and EV-based PT mounting system (PMS) with specific EV challenges. Various literature on PT mounts from the passive, semi-active, and active mounting systems are studied. The parameter optimization technique for mount stiffness and location by various research papers is summarized to understand the existing methodologies and research gap in EV application.
Journal Article

A Review of Dynamic State Estimation for the Neighborhood System of Connected Vehicles

2023-07-28
Abstract Precise vehicle state and the surrounding traffic information are essential for decision-making and dynamic control of intelligent connected vehicles. Tremendous research efforts have been devoted to developing state estimation techniques. This work investigates the research progress in this field over recent years. To be able to describe the state of multiple traffic elements uniformly, the concept of a vehicle neighborhood system is proposed to describe the system composed of vehicles and their surrounding traffic elements and to distinguish it from the traditional macroscopic traffic research field. In this work, the vehicle neighborhood system consists of three main traffic elements: the host vehicle, the preceding vehicle, and the road. Therefore, a review of state estimation methods for the vehicle neighborhood system is presented around the three traffic objects mentioned earlier.
Journal Article

A Review of Intelligence-Based Vehicles Path Planning

2023-07-28
Abstract Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm.
Journal Article

A Review of Sensor Technologies for Automotive Fuel Economy Benefits

2018-12-11
Abstract This article is a review of automobile sensor technologies that have the potential to enhance fuel economy. Based on an in-depth review of the literature and demonstration projects, the following sensor technologies were selected for evaluation: vehicular radar systems (VRS), camera systems (CS), and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. V2V and V2I systems were found to have the highest merit in improving fuel economy over a wide range of integration strategies, with fuel economy improvements ranging from 5 to 20% with V2V and 10 to 25% for V2I. However, V2V and V2I systems require significant adoption for practical application which is not expected in this decade. Numerous academic studies and contemporary vehicular safety systems attest VRS as more technologically mature and robust relative to other sensors. However, VRS offers less fuel economy enhancement (~14%).
Journal Article

A Review on Electromagnetic Sheet Metal Forming of Continuum Sheet Metals

2019-05-29
Abstract Electromagnetic forming (EMF) is a high-speed impulse forming process developed during the 1950s and 1960s to acquire shapes from sheet metal that could not be obtained using conventional forming techniques. In order to attain required deformation, EMF process applies high Lorentz force for a very short duration of time. Due to the ability to form aluminum and other low-formability materials, the use of EMF of sheet metal for automobile parts has been rising in recent years. This review gives an inclusive survey of historical progress in EMF of continuum sheet metals. Also, the EMF is reviewed based on analytical approach, finite element method (FEM) simulation-based approach and experimental approach, on formability of the metals.
Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

A Survey of Intelligent Driving Vehicle Trajectory Tracking Based on Vehicle Dynamics

2023-05-24
Abstract Trajectory tracking control, as one of the core technologies of intelligent driving vehicles, determines the driving performance and safety of intelligent driving vehicles and has received extensive attention and research. In recent years, most of the research results of trajectory tracking control are only applicable to conventional working conditions; however, the actual operating conditions of intelligent driving vehicles are complex and variable, so the research of trajectory tracking control algorithm should be extended to the high-speed low-adhesion coefficient, large curvature, variable curvature, and other compound limit working conditions. This requires more consideration of the vehicle dynamics in the controller design.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
X