Refine Your Search

Topic

Search Results

Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Journal Article

3D-Printed Antenna Design Using Graphene Filament and Copper Tape for High-Tech Air Components

2022-11-25
Abstract Additive manufacturing (AM) technologies can produce lighter parts; reduce manual assembly processes; reduce the number of production steps; shorten the production cycle; significantly reduce material consumption; enable the production of prostheses, implants, and artificial organs; and produce end-user products since it is used in many sectors for many reasons; it has also started to be used widely, especially in the field of aerospace. In this study, polylactic acid (PLA) was preferred for the antenna substrate because it is environmentally friendly, easy to recycle, provides convenience in production design with a three-dimensional (3D) printer, and is less expensive compared to other available materials. Copper (Cu) tape and graphene filament were employed for the antenna patch component due to their benefits.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

A K-Seat-Based PID Controller for Active Seat Suspension to Enhance Motion Comfort

2022-02-16
Abstract Autonomous vehicles (AVs) are expected to have a great impact on mobility by decreasing commute time and vehicle fuel consumption and increasing safety significantly. However, there are still issues that can jeopardize their wide impact and their acceptance by the public. One of the main limitations is motion sickness (MS). Hence, the last year’s research is focusing on improving motion comfort within AVs. On one hand, users are expected to perceive AVs driving style as more aggressive, as it might result in excessive head and body motion. Therefore, speed reduction should be considered as a countermeasure of MS mitigation. On the other hand, the excessive reduction of speed can have a negative impact on traffic. At the same time, the user’s dissatisfaction, i.e., acceptance and subjective comfort, will increase due to a longer journey time.
Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

A Model Study for Prediction of Performance of Automotive Interior Coatings: Effect of Cross-Link Density and Film Thickness on Resistance to Solvents and Chemicals

2019-03-27
Abstract Automotive interior coatings for flexible and rigid substrates represent an important segment within automotive coating space. These coatings are used to protect plastic substrates from mechanical and chemical damage, in addition to providing colour and design aesthetics. These coatings are expected to resist aggressive chemicals, fluids, and stains while maintaining their long-term physical appearance and mechanical integrity. Designing such coatings, therefore, poses significant challenges to the formulators in effectively balancing these properties. Among many factors affecting coating properties, the cross-link density (XLD) and solubility parameter (δ) of coatings are the most predominant factors.
Journal Article

A Multiscale Cylinder Bore Honing Pattern Lubrication Model for Improved Engine Friction

2019-07-02
Abstract Three-dimensional patterns representing crosshatched plateau-honed cylinder bores based on two-dimensional Fast Fourier Transform (FFT) of measured surfaces were generated and used to calculate pressure flow, shear-driven flow, and shear stress factors. Later, the flow and shear stress factors obtained by numerical simulations for various surface patterns were used to calculate lubricant film thickness and friction force between piston ring and cylinder bore contact in typical diesel engine conditions using a mixed lubrication model. The effects of various crosshatch honing angles, such as 30°, 45°, and 60°, and texture heights on engine friction losses, wear, and oil consumption were discussed in detail. It is observed from numerical results that lower lubricant film thickness values are generated with higher honing angles, particularly in mixed lubrication regime where lubricant film thickness is close to the roughness level, mainly due to lower resistance to pressure flow.
Journal Article

A Novel Reference Property-Based Approach to Predict Properties of Diesel Blended with Biodiesel Produced from Different Feedstocks

2021-12-22
Abstract Considering the biodiesel composition, blend percentage, and temperature as input variables in the models to predict biodiesel-diesel blends’ properties is imperative. However, there are no models available in the literature to predict the properties of biodiesel-diesel blends that consider all these variables. The accuracy of spray and combustion models for diesel engines depends on the accuracy at which the fuel properties are estimated. Thus, straightforward approaches to accurately predict the properties of biodiesel-diesel blends are required. A novel reference property-based approach is proposed in the present work to predict the biodiesel-diesel blends’ properties to address this research gap. Models available in the literature correlating the properties of interest to fuel temperature were modified by including a reference property measured at 293 K.
Journal Article

A Perspective on the Challenges and Future of Hydrogen Fuel

2021-10-04
Abstract Many consider hydrogen to be the automobile fuel of the future. Indeed, it has numerous characteristics that makes it very attractive. Hydrogen has a much higher energy density than gasoline, can be produced from water, and its only emission is water. However, there are numerous challenges associated with hydrogen. In particular, the production of hydrogen is a key issue. Currently, most hydrogen is developed from methane, resulting in hydrogen having a carbon footprint. New investments into electrolysis from renewable energy sources is showing promise as an alternative for generating hydrogen. Further, the distribution of hydrogen poses many problems, requiring substantial infrastructure to support a hydrogen economy. Additionally, hydrogen storage is a key issue since most conventional storage mechanisms are overly bulky. If these three issues can be addressed, hydrogen is posed for being a key fuel as the world tries to move away from fossil fuels.
Journal Article

A Reduced-Order Modeling Framework for Simulating Signatures of Faults in a Bladed Disk

2022-08-29
Abstract This article reports a reduced-order modeling framework of bladed disks on a rotating shaft to simulate the vibration signature of faults in different components, aiming toward simulated data-driven machine learning. We have employed lumped and one-dimensional analytical models of the subcomponents for better insight into the complex dynamic response. The framework addresses some of the challenges encountered in analyzing and optimizing fault detection and identification schemes for health monitoring of aeroengines and other rotating machinery. We model the bladed disks and shafts by combining lumped elements and one-dimensional finite elements, leading to a coupled system. The simulation results are in good agreement with previously published data. We model and analyze the cracks in a blade with their effective reduced stiffness approximation.
Journal Article

Active Suspension: Future Lessons from The Past

2018-06-18
Abstract Active suspension was a topic of great research interest near the end of last century. Ultimately broad bandwidth active systems were found to be too expensive in terms of both energy and financial cost. This past work, developing the ultimate vehicle suspension, has relevance for today’s vehicle designers working on more efficient and effective suspension systems for practical vehicles. From a control theorist’s perspective, it provides an interesting case study in the use of “practical” knowledge to allow “better” performance than predicted by theoretically optimal linear controllers. A brief history of active suspension will be introduced. Peter Wright, David Williams, and others at Lotus developed their Lotus modal control concept. In a parallel effort, Dean Karnopp presented the notion of inertial (Skyhook) damping. These concepts will be compared, the combination of these two distinctly different efforts will be discussed, and eventual vehicle results presented.
Journal Article

Advanced Value Stream Mapping: Development of a Conceptual Model Considering Variability in Production Processes

2023-09-07
Abstract Recently, lean manufacturing (LM) practices are being combined with tools and techniques that belong to other areas of knowledge such as risk management (RM). Value stream mapping (VSM) is a well-known tool in showing the value, the value stream, and the flow, which represents the three lean principles. VSM and RM, when used in tandem with one another, are more advantageous in covering VSM issues such as the variability of production processes. In this article, a conceptual model that integrates the two is shown and explained. The model helps to generate scenarios of current state map (CSM) and future state map (FSM) in a dynamic way by identifying current and potential risks. These risks might happen in the future, bringing with it negative ramifications including not reaching the main objectives within the defined time. The model has been tested in a coffee production company belonging to health and food sector.
Journal Article

Aircraft Cockpit Window Improvements Enabled by High-Strength Tempered Glass

2024-01-25
Abstract This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load.
Journal Article

An Experimental Study on Frictional Losses of Coated Piston Rings with Symmetric and Asymmetric Geometry

2021-05-25
Abstract An increase in the efficiency of internal combustion engines is a key challenge for engineers today. Mechanical losses contribute significantly to engine inefficiency, and the piston assembly has the largest share in these losses. Various measures are therefore taken to reduce friction between the piston and the rings against the cylinder. However, the undertaken changes most frequently generate new challenges. For instance, lowering the viscosity of the engine oil or increasing the engine load may lead to accelerated wear of the mating surfaces. In order to resolve this problem, more and more complex materials and anti-wear coatings have to be used. Furthermore, under these conditions, the shape of the ring’s sliding surface becomes more important. This article presents the results of experimental research on the influence of the geometry of the sliding surface and the use of various anti-wear coatings.
Journal Article

Analysis of Dimensions of Surface Textures on Lubrication and Friction of an Engine

2021-06-10
Abstract To improve the lubrication and friction of the crankpin bearing (CB) in the engine, the design of surface textures on the bearing surface is proposed and researched based on the CB hydrodynamic dynamic model. To enhance the reliability of the research results and its closeness to reality, the optimal CB parameters, the experimental data of the external dynamic load W0 acting on the crankpin, and the CB surface roughness in the well-known existing researches are referred to as input data for the simulation process. The effect of the distribution density {n, m}, diameter D, and depth of the microcircular textures hd on improving the lubrication and friction are then analyzed based on the indexes of the increase in the oil film pressure, decrease in the solid asperity contacts in the mixed lubrication region (MLR), friction force, and coefficient of friction (COF) between the crankpin and bearing surfaces, respectively.
Journal Article

Analysis of Metal Pick-Up Formation Process within Automotive Brake Pad

2019-11-19
Abstract Metal Pick-Up (MPU) is a problematic phenomenon in automotive disc brakes. MPU generally forms as some metal lumps on the surface of the brake pad. If brake pads have MPU, during braking they would cause grooving of the disc rotor, generating brake noise and deteriorating the performance of the brake. The previous literature has so far reported that the source of the MPU is an Fe component from a disc rotor or brake pads. However, only a few of the generation mechanisms of MPU have been proven. We investigate MPU to completely elucidate the mechanism of MPU generation by using different analyses than the previous literature. First, to find out the source of MPU generation, we focus on the chemical reaction of a certain component with wear debris during braking, and some of the verification experiments are conducted under the conditions of simulated friction interface.
Journal Article

Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines

2019-01-23
Abstract Insulating combustion chamber surfaces with thermal barrier coatings (TBCs) provides thermal efficiency improvement when done appropriately. This article reports on insulation heat transfer, engine performance characteristics, and damage modelling of “temperature swing” TBCs. “Temperature swing” insulation refers to the insulation material applied on surfaces of combustion chamber walls that enables selective manipulation of its surface temperature profile over the four strokes of an engine cycle. A combined GT Suite-ANSYS Fluent simulation methodology is developed to investigate the impact of thermal properties and insulation thickness for a variety of TBC materials for its “temperature swing” characteristics. This one-dimensional transient heat conduction analyses and engine cycle simulations are performed using scaled-down thermal properties of yttria-stabilized zirconia.
Journal Article

Analysis of the Cross-Sectional Shape and Wiping Angle of a Wiper Blade

2020-05-13
Abstract The windshield wiper is a component that is closely related to safety because it plays an important role in ensuring the driver’s vision despite external factors such as rain and dust. Here, the mechanical properties of different types of blade rubber were evaluated using a miniature tensile test machine for a structural analysis of the types of wiper blade rubber used in automobiles. In addition, a compression set and the aging characteristics of each type of rubber were determined by comparing the mechanical properties and shape changes of the blade rubber after more than one year of use to the same blade rubber before use. Using the mechanical properties as measured by a tensile test, a nonlinear structural analysis of the wiper blade system was conducted using a 3D finite element method (FEM). The contact force distribution and wiping angle of the blade rubber under a static load were measured.
Journal Article

Analysis of the Damage Propagation Process during Actual Operation of a Truck Tire—A Case Study

2022-10-13
Abstract The increased scope of active and passive safety in motor vehicles and the enforcement of approval requirements for individual parts and assemblies affect the design and parameters of a car’s motion. The tire, which transmits forces and torques onto the road’s surface is a particularly crucial element in the vehicle. Its structure, type of mixture, and operating conditions determine the safety of vehicle motion. The three-axial force system loads the tires of the car and affects both the tread and sidewall, as well as the suspension and steering system. Taking into account the controllability and stability of movement, the tire is subjected to dynamic and thermal loads, as well as to wear and random damage. This negatively impacts on the joints of composite layers. The sudden loss of pressure in the tire can lead to serious accidents, especially when moving at high speeds, due to changes in the rolling radius.
Journal Article

Analysis of the Effect of Three Different Dynamic Models Embedded into the Seat Suspension System on the Ride Performance of a Vibratory Roller

2022-06-21
Abstract This study proposes three different models, the negative stiffness structure (NSS), damping structure (DS), and a combination of NSS and DS (NSDS), for the traditional seat suspension (TSS) of the vibratory roller to improve the driver’s ride comfort. A dynamic model of the vibratory roller established under the condition of the vehicle working on an elastoplastic soil with poor terrain surface is used to assess the performance of the NSS, DS, and NSDS. The sensitivity effect of the design parameters of the NSS, DS, and NSDS on their isolation efficiency is analyzed using the indexes of the root mean square (RMS) of the driver’s seat displacement (zws ) and acceleration (aws ). The design parameters of the NSS, DS, and NSDS are then optimized based on the multi-objective optimization method to fully evaluate their isolation efficiency. Finally, the experimental study is carried out on the vibratory roller to verify the research results.
X