Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New Method for Breath Capture Inside a Space Suit Helmet

2007-07-09
2007-01-3248
This project investigates methods to capture an astronaut's exhaled carbon dioxide (CO2) before it becomes diluted with the high volumetric oxygen flow present within a space suit. Typical expired breath contains CO2 partial pressures (pCO2) in the range of 20-35 mm Hg (.0226-.046 atm). This research investigates methods to capture the concentrated CO2 gas stream prior to its dilution with the low pCO2 ventilation flow. Specifically this research is looking at potential designs for a collection cup for use inside the space suit helmet. The collection cup concept is not the same as a breathing mask typical of that worn by firefighters and pilots. It is well known that most members of the astronaut corps view a mask as a serious deficiency in any space suit helmet design. Instead, the collection cup is a non-contact device that will be designed using a detailed Computational Fluid Dynamic (CFD) analysis of the ventilation flow environment within the helmet.
Technical Paper

A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

2005-07-11
2005-01-3079
A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.
Technical Paper

A Proposed Byzantine Fault-Tolerant Voting Architecture using Time-Triggered Ethernet

2017-09-19
2017-01-2111
Over the last couple decades, there has been a growing interest in incorporating commercial off-the-shelf (COTS) technologies and open standards in the design of human-rated spacecraft. This approach is intended to reduce development and upgrade costs, lower the need for new design work, eliminate reliance on individual suppliers, and minimize schedule risk. However, it has not traditionally been possible for COTS solutions to meet the high reliability and fault tolerance requirements of systems implementing critical spacecraft functions. Byzantine faults are considered particularly dangerous to such systems because of their ability to escape traditional means of fault containment and disrupt consensus between system components. In this paper, we discuss the design of a voting protocol using Time-Triggered Ethernet capable of achieving data integrity in the presence of a single Byzantine fault.
Technical Paper

A Study to Explore Locomotion Patterns in Partial Gravity Environments

1992-07-01
921157
The primary objectives of this study were to determine the factors that affect stability during locomotion in both lunar and martian gravity environments and to determine the criteria needed to enhance stability and traction. This study tested the effects of changing the speed of locomotion and the pattern of locomotion under three gravity conditions. The results showed that as the gravity level decreased, the amount of vertical and horizontal forces dropped significantly. The results also showed that there are some similarities across gravity levels with regard to changing the speed as well as the pattern of locomotion. In general, an increase in the speed resulted in an increase in the vertical and the horizontal forces. A change in the pattern of locomotion showed that even at reduced gravity, it will be more difficult to stop than compared to continue or start the motion.
Technical Paper

Access Systems for Partial Gravity Exploration & Rescue: Results from Prototype Testing in an Analog Environment

2007-07-09
2007-01-3033
An EVA simulation with a medical contingency scenario was conducted in 2006 with the NASA Haughton-Mars and EVA Physiology System and Performance Projects, to develop medical contingency management and evacuation techniques for planetary surface exploration. A rescue/evacuation system to allow two rescuer astronauts to evacuate one incapacitated astronaut was evaluated. The rescue system was utilized effectively to extract an injured astronaut up a slope of15-25° and into a surface mobility rover for transport to a simulated habitat for advanced medical care. Further research is recommended to evaluate the effects of reduced gravity and to develop synergies with other surface systems for carrying out the contingency procedures.
Technical Paper

Air Turbine Starter Condition Monitoring

1999-04-06
1999-01-1379
The need for Air Turbine Starter (ATS) condition monitoring is driven by industry demand for continuous improvement in reliability and reduction in repair and overhaul costs. This paper discusses issues for condition monitoring of Air Turbine Starters (ATS), including the need for condition monitoring, selection of monitoring parameters, current projects, and goals for future designs. The USAF is currently conducting a program to develop a simple, stand-alone device capable of indicating impending failures. This device will likely focus on a combination of temperature monitoring and magnetic chip detection. Future ATS condition monitoring devices should be capable of more comprehensive evaluation of starter parameters.
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

2005-07-11
2005-01-2872
In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Technical Paper

Analysis and Design of Crew Sleep Station for ISS

2002-07-15
2002-01-2303
This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary.
Technical Paper

Automatic Thermal Control Through a LCVG for a Spacesuit

1999-07-12
1999-01-1970
Automatic thermal control (ATC) was investigated for implementation into a spacesuit to provide thermal neutrality to the astronaut through a range of activity levels. Two different control concepts were evaluated and compared for their ability to maintain subject thermal comfort. Six test subjects, who were involved in a series of three tests, walked on a treadmill following specific metabolic profiles while wearing the Mark III spacesuit in ambient environmental conditions. Results show that individual subject comfort was effectively provided by both algorithms over a broad range of metabolic activity. ATC appears to be highly effective in providing efficient, “hands-off” thermal regulation requiring minimal instrumentation. Final selection of an algorithm to be implemented in an advanced spacesuit system will require testing in dynamic thermal environments and consideration of technology for advancement in instrumentation and controller performance.
Technical Paper

BIO-Plex Thermal Control System Design

2001-07-09
2001-01-2324
Engineers at the Johnson Space Center (JSC) are using innovative strategies to design the TCS for the Bio-regenerative Planetary Life Support Systems Test Complex (BIO-Plex), a regenerative advanced life support system ground test bed. This paper provides a current description of the BIO-Plex TCS design, testing objectives, analyses, descriptions of the TCS test articles expected to be tested in the BIO-Plex, and forward work regarding TCS. The TCS has been divided into some subsystems identified as permanent “infrastructure” for the BIO-Plex and others that are “test articles” that may change from one test to the next. The infrastructure subsystems are the Heating, Ventilation and Air-Conditioning (HVAC), the Crew Chambers Internal Thermal Control Subsystem (CC ITCS), the Biomass Production Chamber Internal Thermal Control Subsystem (BPC ITCS), the Waste Heat Distribution Subsystem (WHDS) and the External Thermal Control Subsystem (ETCS).
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Control Structure Interaction of Multi-Flexible-Body Space Station and RCS Attitude Control

1992-10-01
922016
Space Station Freedom (SSF) attitude control represents a challenging Control Structure Interaction (CSI) problem. NASTRAN data show that flexure modes are densely packed in a narrow frequency band with a significant mode at very low frequency as low as 0.08 Hz. Furthermore, modal characteristics are dynamically changing due to articulation of substructures. Under these inherent structural conditions, the Space Station Attitude Control System (ACS) must provide stable attitude and attitude rate control during all phases of buildup and operations for assembly flights. Interaction between the flexible Station bending modes and attitude control system is of concern. This paper describes control structure interaction of the flexible Space Station and the Reaction Control System (RCS) under the influence of the elastic vehicle motion.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
Technical Paper

Development of a Thermal Control System Dual-Membrane Gas Trap

1995-07-01
951461
The Internal thermal control system (ITCS) for the International Space Station Alpha (ISSA) employs a dual-membrane gas trap to remove and vent noncondensed gases entrained in the water-cooling loop. The removal of noncondensed gas bubbles is significant because the gases impede the performance of the centrifugal pump, interfere with the coolant flow, and affect instrumentation readings. The gas trap utilizes hydrophobic and hydrophilic membrane tube pairs to vent separated gases to ambient. Bench-top tests of the current configuration have demonstrated removal of nitrogen at concentrations up to 8 percent by volume at a 3000 lbm/hr water flow rate. Optimization studies to maximize the removal of noncondensed gases from the water-cooling loop with minimal pressure drop have been performed to determine the ideal membrane configuration. The flight test design uses one hydrophobic hollow fiber per membrane tube pair to minimize water vapor loss.
Technical Paper

Development of the CELSS Emulator at NASA JSC

1989-07-01
891477
The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.
Technical Paper

Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

2003-07-07
2003-01-2566
The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling.
Technical Paper

Dynamic Modeling of the Minimum Consumables PLSS

1999-07-12
1999-01-1999
A transient model of the Minimum Consumables Portable Life Support System (MPLSS) Advanced Space Suit design has been developed and implemented using MAT-LAB/Simulink. The purpose of the model is to help with sizing and evaluation of the MPLSS design and aid development of an automatic thermal comfort control strategy. The MPLSS model is described, a basic thermal comfort control strategy implemented, and the thermal characteristics of the MPLSS Advanced Space Suit are investigated.
Technical Paper

EVA Operational Enhancements and ASEM

1992-07-01
921341
Among the many firsts which will occur on STS-49, the maiden voyage of the Space Shuttle Endeavour, a Space Station Freedom (SSF) experiment entitled Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) promises to test the boundaries of EVA operational capabilities. Should the results be favorable, station and other major users of EVA stand to benefit from increased capabilities. Even the preparation for the ASEM experiment is serving as a pathfinder for complex SSF operations. This paper reviews the major tasks planned for ASEM and discusses the operational analogies investigators are attempting to draw between ASEM and SSF. How these findings may be applied to simplify station assembly and maintenance will also be discussed.
Technical Paper

Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

2004-07-19
2004-01-2429
The current dual-membrane gas trap is designed to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pumps. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.
X