Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

Experimental and Numerical Studies on Combustion Model Selection for Split Injection Spray Combustion

A wide variety of spray models and their associated sub-models exist to assist with numerical spray development studies in the many applicable areas viz., turbines, internal combustion engines etc. The accuracy of a simulation when compared to the experiments varies, as these models chosen are varied. Also, the computational grid plays a crucial role in model correctness; a grid-converged CFD study is more valuable and assists in proper validation at later stages. Of primary relevance to this paper are the combustion models for a grid-converged Lagrangian spray modeling scenario. CONVERGE CFD code is used for simulation of split injection diesel (n-heptane) sprays and a structured methodology, using RNG k-ε turbulence model, is followed to obtain a grid-converged solution for the key Computational Fluid Dynamics (CFD) parameters viz., grid size, injected parcels and spray break-up time constant.
Technical Paper

High-Speed Spray-to-Spray Collision Study on Two-Hole Impinging Jet Nozzles

High-speed spray-to-spray liquid impingement could be an effective phenomenon for the spray propagation and droplet vaporization. To achieve higher vaporization efficiency, impingement from two-hole nozzles is analyzed in this paper. This paper focuses on investigating vaporization mechanism as a function of the impingement location and the collision breakup process provided by two-hole impinging jet nozzles. CFD (Computational Fluid Dynamics) is adopted to do simulation. Lagrangian model is used to predict jet-to-jet impingement and droplet breakup conditions while KH-RT breakup and O'Rourke collision models are implemented for the simulation. The paper includes three parts: First, a single spray injected into an initially quiescent constant volume chamber using the Lagrangian approach is simulated to identify the breakup region, which will be considered as a reference to study two-hole impinging jet nozzles. Lagrangian simulation results would be validated via experimental results.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.